Skip to main content

Advertisement

Log in

Processing and Characterization of Sub-delta Solvus Forged Hemispherical Forgings of Inconel 718

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, microstructure and mechanical properties of 200 mm diameter Inconel 718 hemispherical domes processed at 1025 °C through closed die hammer forging have been investigated. Microstructure and mechanical properties of the forgings in radial and tangential directions were characterized using optical microscopy, scanning electron microscopy, impact testing, and tensile testing. Grain size of the forgings at three different locations was fine with an average grain size of ASTM No. 8-9. The typical tensile properties of the forgings in solution-treated and aged condition were ultimate tensile strength-1450 MPa, yield strength-1240 MPa, and ductility-25%. The fine grain size achieved in forgings has been attributed to delta phase present at grain boundaries which pinned the grains during forging and prevented grain coarsening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Benton, I. Bllinger, D.E.J. Jaekle, M.F. Osborn, Design and Manufacture of a Propellant Tank Assembly, AiAA, 2007, p 5559.

  2. C. Clauss, AIAA 2007-5558 Design, Qualification, and Thermal Testing of a Specialized Composite Overwrap Pressure Vessel (COPV) Distribution A- Approved for Public Release, Distribution Unlimited AIAA-2007-5558 Distribution A- Approved for Public Release, Dist, 2007, p 1–10.

  3. A.K. Jha, S.V.S.N. Murty, K. Sreekumar, and P.P. Sinha, High Strain Rate Deformation and Cracking of AA 2219 Aluminium Alloy Welded Propellant Tank, Eng. Fail. Anal., 2009, 16, p 2209–2216

    Article  Google Scholar 

  4. J.G. Hust and A.F. Clark, A Survey of Compatibility of Materials with High Pressure Oxygen Service, Cryogenics (Guildf)., 1973, 13, p 325–336

    Article  Google Scholar 

  5. A.F. Clark and J.G. Hust, A Review of the Compatibility of Structural Materials with Oxygen, AIAA J., 1974, 12, p 441–454

    Article  Google Scholar 

  6. G. Shen, D. Kahlke, R. Denkenberger, and D. Furrer, Advances in the State-of-the-Art of Hammer Forged Alloy 718 Aerospace Components, Superalloys, 2001, 718, p 625–706

    Google Scholar 

  7. N.A. Wilkinson, Forging of 718-The Importance of TMP, Proc. Int. Symp. Superalloys, 1989, 718, p 119–133

    Google Scholar 

  8. S.C. Krishna, S.K. Singh, S.V.S.N. Murty, G. Venkata Narayana, A.K. Jha, B. Pant, and K.M. George, Closed Die Hammer Forging of Inconel 718, J. Metall., 2014, 2014, p 1–7. doi:10.1155/2014/972917

    Article  Google Scholar 

  9. Z.J. Luo, H. Tang, F.C. Zeng, N.C. Guo, H.Y. Xu, H.B. Zhang, and L.F. Qi, An Effective Technique for Producing High Performance IN718 Forgings Using Hammers, J. Mater. Process. Tech., 1991, 28, p 383–390

    Article  Google Scholar 

  10. M. Cheng, H.Y. Zhang, and S.H. Zhang, Microstructure Evolution of Delta-Processed IN718 During Holding Period After Hot Deformation, J. Mater. Sci., 2012, 47, p 251–256

    Article  Google Scholar 

  11. R.C. Schwant, S.V. Thamboo, A.F. Anderson, C.B. Adasczik, B.J. Bond, L.A. Jackman, and J.F. Uginet, Large 718 Forgings for Land Based Turbines, Superalloys, 1997, 718(625), p 141–152

    Google Scholar 

  12. A.W. Dix, J.M. Hyzak, and R.P. Singh, Application of Ultra Fine Grain Alloy 718 Forging Billet, TMS, USA, 1992, p 23–32

    Google Scholar 

  13. G. Shen, R. Shivpuri, S.L. Semiatin, J.Y. Lee, and T. Altan, Investigation of Microstructure and Thermomechanical History in the Hammer Forging of an Incoloy 901 Disk, CIRP Ann. Manuf. Technol., 1993, 42, p 343–346

    Article  Google Scholar 

  14. A. Chamanfar, L. Sarrat, M. Jahazi, M. Asadi, A. Weck, and A.K. Koul, Microstructural Characteristics of Forged and Heat Treated Inconel-718 Disks, Mater. Des., 2013, 52, p 791–800

    Article  Google Scholar 

  15. J. Lacaze, M. Dehmas, A. Niang, and B. Viguier, TEM Study of High-Temperature Precipitation of Delta Phase in Inconel 718 Alloy, Adv. Mater. Sci. Eng., 2011, doi:10.1155/2011/940634

    Google Scholar 

  16. Y. Desvalles, M. Bouzidi, F. Boisand, and N. Beaude, Delta Phase in Inconel 718: Mechanical Properties and Forging Process Requirements, Superalloys (625 and Var. Deriv.), 1994, 718(706), p 281–291

    Google Scholar 

  17. M. Agilan, S.C. Krishna, S.K. Manwatkar, E.G. Vinayan, D. Sivakumar, and B. Pant, Effect of Welding Processes (GTAW & EBW) and Solutionizing Temperature on Microfissuring Tendency in Inconel 718 Welds, Mater. Sci. Forum, 2012, 710, p 603–607

    Article  Google Scholar 

  18. S.-H. Zhang, H.-Y. Zhang, and M. Cheng, Tensile Deformation and Fracture Characteristics of Delta-Processed Inconel 718 Alloy at Elevated Temperature, Mater. Sci. Eng. A, 2011, 528, p 6253–6258

    Article  Google Scholar 

  19. W. Horvath, W. Zechner, J. Tockner, M. Berchthaler, G. Weber, and E. Werner, The Effectiveness of Direct Aging on Inconel 718 Forgings Produced at High Strain Rates as Obtained on a Screw Press, Superalloys (625 and various derivatives), 2001, 718(706), p 223–228

    Article  Google Scholar 

  20. H.S. Jeong, J.R. Cho, and H.C. Park, Microstructure Prediction of Nimonic 80A for Large Exhaust Valve During Hot Closed Die Forging, J. Mater. Process. Technol., 2005, 162–163, p 504–511

    Article  Google Scholar 

  21. J.M. Zhang, Z.Y. Gao, J.Y. Zhuang, and Z.Y. Zhong, Modeling of Grain Size in Superalloy IN718 During Hot Deformation, J. Mater. Process. Technol., 1999, 88, p 244–250

    Article  Google Scholar 

  22. S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan, Modeling Grain Size During Hot Deformation of IN 718, Scr. Mater., 1999, 42, p 17–23

    Article  Google Scholar 

  23. H.Y. Zhang, S.H. Zhang, Z.X. Li, and M. Cheng, Hot Die Forging Process Optimization of Superalloy IN718 Turbine Disc Using Processing Map and Finite Element Method, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2010, 224, p 103–110

    Article  Google Scholar 

  24. X. Zhao, R.P. Guest, S. Tin, D. Cole, J.W. Brooks, and M. Peers, Modelling Hot Deformation of Inconel 718 Using State Variables, Mater. Sci. Technol., 2004, 20, p 1414–1420

    Article  Google Scholar 

  25. Y. Wang, W.Z. Shao, L. Zhen, and B.Y. Zhang, Hot Deformation Behavior of Delta-Processed Superalloy 718, Mater. Sci. Eng. A, 2011, 528, p 3218–3227

    Article  Google Scholar 

  26. S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan, Microstructural Modeling of Metadynamic Recrystallization in Hot Working of IN 718 Superalloy, Mater. Sci. Eng. A, 2000, 293, p 198–207

    Article  Google Scholar 

  27. D.J. Cha, D.K. Kim, J.R. Cho, and W.B. Bae, Hot Shape Forging of Gas Turbine Disk Using Microstructure Prediction and Finite Element Analysis, Int. J. Precis. Eng. Manuf., 2011, 12, p 331–336

    Article  Google Scholar 

  28. Y. Zhu, Y. Zhimin, and X. Jiangpin, Microstructural Mapping in Closed Die Forging Process of Superalloy Nimonic 80a Valve Head, J. Alloys Compd., 2011, 509, p 6106–6112

    Article  Google Scholar 

  29. W.-D. Cao and R.L. Kennedy, Application of Direct Aging To Allvac® 718PlusTM Alloy for Improved Performance, Superalloys (625, Deriv.), 2005, 718(706), p 213–222

    Google Scholar 

  30. M.G. Burke, W.J. Mills, R. Bajaj, and W. MiMin, Microstructure and Properties of Direct-Aged Alloy 625, Superalloys, 2001, 718, p 625–706

    Google Scholar 

  31. S.C. Krishna, N.K. Gangwar, A.K. Jha, B. Pant, and P.V. Venkitakrishnan, On the Direct Aging of Iron Based Superalloy Hot Rolled Plates, Mater. Sci. Eng. A, 2015, 648, p 274–279

    Article  Google Scholar 

  32. L.A. Jackman, G.J. Smith, A.W. Dix, and M.L. Lasonde, Rotary Forge Processing of Direct Aged Inconel 718 for Aircraft Engine Shafts, Superalloys (625 Deriv.), 1991, 718(716), p 125–132

    Google Scholar 

  33. J.F. Radavich, J.W.H. Couts, Factors Affecting Delta Phase Precipitation and Growth at Hot Work Temperatures for Direct Aged INCO 718, TMS, Superalloys, 1984, p 497–507.

  34. H.-T. Lee and W.-H. Hou, Fine Grains Forming Process, Mechanism of Fine Grain Formation and Properties of Superalloy 718, Mater. Trans., 2012, 53, p 716–723

    Article  Google Scholar 

  35. L.C.M. Valle, L.S. Araújo, S.B. Gabriel, J. Dille, and L.H. De Almeida, The Effect of d Phase on the Mechanical Properties of an Inconel 718 Superalloy, J. Mater. Eng. Perform., 2013, 22, p 1512–1518

    Article  Google Scholar 

  36. Y.H. Yang, J.J. Yu, X.F. Sun, T. Jin, H.R. Guan, and Z.Q. Hu, Investigation of Impact Toughness of a Ni-Based Superalloy at Elevated Temperature, Mater. Des., 2012, 36, p 699–704

    Article  Google Scholar 

  37. P. Wang, S.P. Lu, N.M. Xiao, D.Z. Li, and Y.Y. Li, Effect of Delta Ferrite on Impact Properties of Low Carbon 13Cr–4Ni Martensitic Stainless Steel, Mater. Sci. Eng. A, 2010, 527, p 3210–3216

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. K. Sivan Director, Vikram Sarabhai Space Centre, Trivandrum, for his kind permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chenna Krishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chenna Krishna, S., Rao, G.S., Singh, S.K. et al. Processing and Characterization of Sub-delta Solvus Forged Hemispherical Forgings of Inconel 718. J. of Materi Eng and Perform 25, 5477–5485 (2016). https://doi.org/10.1007/s11665-016-2377-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2377-9

Keywords

Navigation