Skip to main content

Advertisement

Log in

Effect of Fe on Microstructure and Properties of 8xxx Aluminum Conductor Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of Fe contents (0.3-0.7 wt.%) on the microstructure, electrical conductivity, mechanical and creep properties of 8xxx aluminum conductor alloys was investigated. Results revealed that the as-cast microstructure of 8xxx alloys was consisted of equiaxed α-Al grains and secondary Fe-rich intermetallics distributed in the interdendritic region. The extruded microstructure showed partially recrystallized structure for 0.3% Fe alloy but only dynamically recovered structures for 0.5 and 0.7% Fe alloys. With increasing Fe contents, the ultimate tensile strength and yield strength were remarkably improved, while the electrical conductivity was slightly decreased. Moreover, the creep resistance was greatly improved, which is attributed to the larger volume fraction of fine intermetallic particles and smaller subgrain size in the higher Fe-containing alloys. The creep threshold stress was found to increase from 24.6 to 33.9 MPa with increasing Fe contents from 0.3 to 0.7%, respectively. The true stress exponent values were close to 3 for all three experimental alloys, indicating that the creep mechanism of 8xxx alloys was controlled by dislocation glide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.Y. Murashkin, I. Sabirov, X. Sauvage, and R.Z. Valiev, Nanostructured Al and Cu Alloys with Superior Strength and Electrical Conductivity, J. Mater Sci., 2016, 51(1), p 33–49

    Article  Google Scholar 

  2. W.H. Yuan and Z.Y. Liang, Effect of Zr Addition on Properties of Al-Mg-Si Aluminum Alloy Used for All Aluminum Alloy Conductor, Mater. Des., 2011, 32(8–9), p 4195–4200

    Article  Google Scholar 

  3. L. Pan, B. Bourassa, and X.G. Chen, Effect of Thermomechanical Processing on Electrical and Mechanical Properties of Aluminum Conductor Alloys, Mater. Sci. Forum, 2014, 794–796, p 1121–1126

    Article  Google Scholar 

  4. C. Olin, Aluminum Alloy Conductor, U.S.P. 3711339, US, 1973.

  5. X.K. Ji, H. Zhang, S. Luo, F.L. Jiang, and D.F. Fu, Microstructures and Properties of Al-Mg-Si Alloy Overhead Conductor by Horizontal Continuous Casting and Continuous Extrusion Forming Process, Mater. Sci. Eng. A, 2016, 649, p 128–134

    Article  Google Scholar 

  6. K.W. Barber and K.J. Callaghan, Improved Overhead Line Conductors Using Aluminum Alloy 1120, IEEE Trans. Power Deliv., 1995, 10(1), p 403–409

    Article  Google Scholar 

  7. H.J. Mcqueen, E.H. Chia, and E.A. Starke, Fe-Particle-Stabilized Aluminum Conductors, JOM, 1986, 38(4), p 19–24

    Article  Google Scholar 

  8. X.Y. Zhang, H. Zhang, X.X. Kong, and D.F. Fu, Microstructure and Properties of Al-0.70Fe-0.24Cu Alloy Conductor Prepared by Horizontal Continuous Casting and Subsequent Continuous Extrusion Forming, Trans. Nonferr. Met. Soc. China, 2015, 25(6), p 1763–1769

    Article  Google Scholar 

  9. O.D. Sherby, A. Goldberg, and O.A. Ruano, Solute-diffusion-controlled dislocation creep in pure aluminium containing 0.026 at.% Fe, Philos. Mag., 2004, 84(23), p 2417–2434

    Article  Google Scholar 

  10. P. Skjerpe, Intermetallic Phases Formed During DC-Casting of an Al-0.25 Wt Pct Fe-0.13 Wt Pct Si Alloy, Metall. Trans. A, 1987, 18(2), p 189–200

    Article  Google Scholar 

  11. C.M. Allen, K.A.Q. O’Reilly, B. Cantor, and P.V. Evans, Intermetallic Phase Selection in 1XXX Al Alloys, Prog. Mater. Sci., 1998, 43(2), p 89–170

    Article  Google Scholar 

  12. M. Shakiba, N. Parson, and X.G. Chen, Effect of Homogenization Treatment and Silicon Content on the Microstructure and Hot Workability of Dilute Al-Fe-Si Alloys, Mater. Sci. Eng. A, 2014, 619, p 180–189

    Article  Google Scholar 

  13. D. Kalish, B.G. Lefevre, and S.K. Varma, Effect of Alloying and Processing on Subgrain-Strenth Relationship in Aluminum Conductor Alloys, Metall. Mater. Trans. A, 1977, 8(1), p 204–206

    Article  Google Scholar 

  14. H.J. Mcqueen, K. Conrod, and G. Avramovic-cingara, The Hot-Working Characteristics of Eutectic-Rod-Stabilized Conductor Alloys, Can. Metall. Q., 1993, 32(4), p 375–386

    Article  Google Scholar 

  15. M. Shakiba, N. Parson, and X.G. Chen, Effect of Iron and Silicon Content on the Hot Compressive Deformation Behavior of Dilute Al-Fe-Si Alloys, J. Mater. Eng. Perform., 2015, 24(1), p 404–415

    Article  Google Scholar 

  16. R.W. Westerlund, Effects of Composition and Fabrication Practice on Resistance to Annealing and Creep of Aluminum Conductor Alloys, Metall. Trans., 1974, 5(3), p 667–672

    Article  Google Scholar 

  17. D.E. Newbury, What is Causing Failures of Aluminum Wire Connections in Residential Circuits, Anal. Chem., 1982, 54(9), p A059–A064

    Article  Google Scholar 

  18. E. Kandare, S. Feih, A. Kootsookos, Z. Mathys, B.Y. Lattimer, and A.P. Mouritz, Creep-Based Life Prediction Modelling of Aluminium in Fire, Mater. Sci. Eng. A, 2010, 527(4–5), p 1185–1193

    Article  Google Scholar 

  19. F.J. Humphreys, Review—Grain and Subgrain Characterisation by Electron Backscatter Diffraction, J. Mater. Sci., 2001, 36(16), p 3833–3854

    Article  Google Scholar 

  20. K. Liu, X. Cao, and X.-G. Chen, A New Iron-Rich Intermetallic-AlmFe Phase in Al-4.6Cu-0.5Fe Cast Alloy, Metall. Mater. Trans. A, 2012, 43(4), p 1097–1101

    Article  Google Scholar 

  21. C.J. Shi, W.M. Mao, and X.G. Chen, Evolution of Activation Energy During Hot Deformation of AA7150 Aluminum Alloy, Mater. Sci. Eng. A, 2013, 571, p 83–91

    Article  Google Scholar 

  22. E. Orowan, Dislocations and Mechanical Properties, Chap. 3, Dislocation in Metals, M. Cohen, Ed., AIME, New York, 1957, p 103–131

  23. E. Arzt and D.S. Wilkinson, Threshold Stresses for Dislocation Climb Over Hard Particles—The Effect of an Attractive Interaction, Acta Metall., 1986, 34(10), p 1893–1898

    Article  Google Scholar 

  24. E. Arzt and J. Rosler, The Kinetics of Dislocation Climb Over Hard Particles. 2. Effects of an Attractive Particle Dislocation Interaction, Acta Metall., 1988, 36(4), p 1053–1060

    Article  Google Scholar 

  25. R.A. Karnesky, L. Meng, and D.C. Dunand, Strengthening Mechanisms in Aluminum Containing Coherent Al3Sc Precipitates and Incoherent Al2O3 Dispersoids, Acta Mater., 2007, 55(4), p 1299–1308

    Article  Google Scholar 

  26. Y. Li and T.G. Langdon, An Examination of a Substructure-Invariant Model for the Creep of Metal Matrix Composites, Mater. Sci. Eng. A, 1999, 265(1–2), p 276–284

    Article  Google Scholar 

  27. F. Dobes and P. Kratochvil, The Effect of Zr Addition on Creep of Fe-30 at.% Al Alloys, Intermetallics, 2013, 43, p 142–146

    Article  Google Scholar 

  28. Z.G. Lin and F.A. Mohamed, Creep and Microstructure in Powder Metallurgy 15 vol.% SiCp-2009 Al Composite, J. Mater. Sci., 2012, 47(6), p 2975–2984

    Article  Google Scholar 

  29. J.E. Dorn and N. Jaffe, Effect of Temperature on the Creep of Polycrystalline Aluminum by the Cross-slip Mechanism, Trans. Met. Soc. AIME, 1961, 221(2), p 229–233

    Google Scholar 

  30. N. Jaffe and J.E. Dorn, Effect of Stress on Creep Rate of High-Purity Aluminum in Cross-slip Region, Trans. Met. Soc. AIME, 1962, 224(6), p 1167–1173

    Google Scholar 

  31. O. Ryen, O. Nijs, E. Sjolander, B. Holmedal, H.E. Ekstrom, and E. Nes, Strengthening Mechanisms in Solid Solution Aluminum Alloys, Metall. Mater. Trans. A, 2006, 37A(6), p 1999–2006

    Article  Google Scholar 

  32. P.K. Chaudhury and F.A. Mohamed, Creep and Ductility in an Al-Cu Solid-Solution Alloy, Metall. Mater. Trans. A, 1987, 18(12), p 2105–2114

    Article  Google Scholar 

  33. V.K. Rao, D.M.R. Taplin, and P.R. Rao, The Grain Size Dependence of Flow and Fracture in a Cr-Mn-N Austenitic Steel from 300 to 1300 K, Metall. Trans. A, 1975, 6A(1), p 77–86

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from Natural Science and Engineering Research Council of Canada (NSERC) and Rio Tinto through the NSERC Industrial Research Chair in Metallurgy of Aluminum Transformation at the University of Quebec at Chicoutimi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Liu, K., Breton, F. et al. Effect of Fe on Microstructure and Properties of 8xxx Aluminum Conductor Alloys. J. of Materi Eng and Perform 25, 5201–5208 (2016). https://doi.org/10.1007/s11665-016-2373-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2373-0

Keywords

Navigation