Skip to main content
Log in

Tribological Characterization of NiAl Self-Lubricating Composites Containing V2O5 Nanowires

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to improve the tribological properties of NiAl self-lubricating composites, V2O5 nanowires with average width of 39 nm were synthesized by hydrothermal method. Furthermore, NiAl self-lubricating composites containing V2O5 nanowires (NAV) were successfully fabricated using spark plasma sintering technique. The tribological characteristics and wear mechanisms of NAV were evaluated at different sliding speeds, counterface ball materials and elevated temperatures. The results revealed that the frictional properties of NAV improved slightly with adding V2O5 nanowires at room temperature if compared to NiAl self-lubricating composites without solid lubricant as investigated in previous studies, while the wear mechanisms of NAV change widely with the change of the counterface ball materials and sliding velocities. V2O5 nanowires showed a beneficial effect on tribological performance of NAV at high temperatures owing to the formation of the V2O5-enriched glaze film at temperatures above 700 °C, which acts as the lubricous and protective mask against the severe wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Noebe, R. Bowman, and M. Nathal, Physical and Mechanical Properties of the B2 Compound NiAl, Int. Mater. Rev., 1993, 38(4), p 193–232

    Article  Google Scholar 

  2. D. Miracle, Overview No. 104 the Physical and Mechanical Properties of NiAl, Acta Mater., 1993, 41(3), p 649–684

    Article  Google Scholar 

  3. N. Stoloff, C. Liu, and S. Deevi, Emerging Applications of Intermetallics, Intermetallics, 2000, 8(9), p 1313–1320

    Article  Google Scholar 

  4. K. Hahn and K. Vedula, Room Temperature Tensile Ductility in Polycrystalline B2 NiAl, Scripta Mater., 1989, 23(1), p 7–12

    Article  Google Scholar 

  5. P. Nagpal and I. Baker, The Effect of Grain Size on the Room-Temperature Ductility of NiAl, Scripta Mater., 1990, 24(12), p 2381–2384

    Article  Google Scholar 

  6. J.A. Hawk and D.E. Alman, Abrasive Wear of Intermetallic-Based Alloys and Composites, Mater. Sci. Eng. A, 1997, 239, p 899–906

    Article  Google Scholar 

  7. I. Baker, P. Nagpal, F. Liu, and P. Munroe, The Effect of Grain Size on the Yield Strength of FeAl and NiAl, Acta Mater., 1991, 39(7), p 1637–1644

    Article  Google Scholar 

  8. C. Yust and L. Allard, Wear Characteristics of an Alumina-Silicon Carbide Whisker Composite at Temperatures to 800 °C in Air, Tribol. Trans., 1989, 32(3), p 331–338

    Article  Google Scholar 

  9. P.J. Blau and C.E. Devore, Sliding Behavior of Alumina/Nickel and Alumina/Nickel Aluminide Couples at Room and Elevated Temperature, J. Tribol., 1988, 110(4), p 646–652

    Article  Google Scholar 

  10. P.J. Blau and C.E. Devore, Sliding Friction and Wear Behaviour of Several Nickel Aluminide Alloys Under Dry and Lubricated Conditions, Tribol. Inter., 1990, 23(4), p 226–234

    Article  Google Scholar 

  11. A.M.M. Ibrahim, X.L. Shi, W.Z. Zhai, J. Yao, Z.S. Xu, L. Cheng et al., Tribological Behavior of NiAl-1.5 wt.% Graphene Composite Under Different Velocities, Tribol. Trans., 2014, 57(6), p 1044–1050

    Article  Google Scholar 

  12. A.M.M. Ibrahim, X.L. Shi, A. Zhang, K. Yang, and W.Z. Zhai, Tribological Characteristics of NiAl Matrix Composites with 1.5 wt.% Graphene at Elevated Temperatures: An Experimental and Theoretical Study, Tribol. Trans., 2015, 58(6), p 1076–1083

    Article  Google Scholar 

  13. Y.C. Xiao, X.L. Shi, W.Z. Zhai, K. Yang, and J. Yao, Effect of Temperature on Tribological Properties and Wear Mechanisms of NiAl Matrix Self-Lubricating Composites Containing Graphene Nanoplatelets, Tribol. Trans., 2015, 58(4), p 729–735

    Article  Google Scholar 

  14. A.M.M. Ibrahim, X.L. Shi, W.Z. Zhai, and K. Yang, Improving the Tribological Properties of NiAl Matrix Composites Via Hybrid Lubricants of Silver and Graphene Nano Platelets, RSC Adv., 2015, 5(76), p 61554–61561

    Article  Google Scholar 

  15. S. Zhu, Q. Bi, H. Wu, J. Yang, and W. Liu, NiAl Matrix High-Temperature Self-Lubricating Composite, Tribol. Lett., 2011, 41(3), p 535–540

    Article  Google Scholar 

  16. T. Murakami, J. Ouyang, S. Sasaki, K. Umeda, and Y. Yoneyama, High-Temperature Tribological Properties of Al2O3, Ni-20 Mass.% Cr and NiAl Spark-Plasma-Sintered Composites Containing BaF2–CaF2 Phase, Wear, 2005, 259(1), p 626–633

    Article  Google Scholar 

  17. O. Umanskyi, O. Poliarus, M. Ukrainets, and I. Martsenyuk, Effect of ZrB 2 , CrB 2 and TiB 2 Additives on the Tribological Characteristics of NiAl-Based Gas-Thermal Coatings, Trans Tech Publ, Key Eng. Mater., 2014, p 20–23

    Google Scholar 

  18. L. He, Y.F. Tan, X.L. Wang, Q.F. Jing, and X. Hong, Tribological Properties of Laser Cladding TiB2 Particles Reinforced Ni-Base Alloy Composite Coatings on Aluminum Alloy. Rare Met., 2015, 34(11), p 789–796

    Article  Google Scholar 

  19. X.L. Shi, M. Wang, W.Z. Zhai, Z.S. Xu, Q.X. Zhang, and Y. Chen, Influence of Ti3SiC2 Content on Tribological Properties of NiAl Matrix Self-Lubricating Composites, Mater. Des., 2013, 45, p 179–189

    Article  Google Scholar 

  20. X.L. Shi, S. Song, W.Z. Zhai, M. Wang, Z.S. Xu, J. Yao et al., Tribological Behavior of Ni3Al Matrix Self-Lubricating Composites Containing WS2, Ag and h-BN Tested from Room Temperature to 800 °C, Mater. Des., 2014, 55, p 75–84

    Article  Google Scholar 

  21. X.L. Shi, W.Z. Zhai, M. Wang, Z.S. Xu, J. Yao, S. Song et al., Tribological Behaviors of NiAl Based Self-Lubricating Composites Containing Different Solid Lubricants at Elevated Temperatures, Wear, 2014, 310(1), p 1–11

    Article  Google Scholar 

  22. X.L. Shi, M. Wang, W.Z. Zhai, Z.S. Zhu, Z.S. Xu, Q.X. Zhang et al., Friction and Wear Behavior of NiA-10 wt.% Ti3SiC2 Composites, Wear, 2013, 303(1), p 9–20

    Article  Google Scholar 

  23. X.L. Shi, W.Z. Zhai, Z.S. Xu, M. Wang, J. Yao, S. Song et al., Synergetic Lubricating Effect of MoS2 and Ti3SiC2 on Tribological Properties of NiAl Matrix Self-Lubricating Composites Over a Wide Temperature Range, Mater. Des., 2014, 55, p 93–103

    Article  Google Scholar 

  24. A. Pauschitz, M. Roy, and F. Franek, Mechanisms of Sliding Wear of Metals and Alloys at Elevated Temperatures, Tribol. Int., 2008, 41(7), p 584–602

    Article  Google Scholar 

  25. H. Pasaribu, K. Reuver, D. Schipper, S. Ran, K. Wiratha, A. Winnubst et al., Environmental Effects on Friction and Wear of Dry Sliding Zirconia and Alumina Ceramics Doped with Copper Oxide, Int. J Refract. Met. Hard Mater., 2005, 23, p 386–390

    Article  Google Scholar 

  26. M. Peterson, S. Murray, and J. Florek, Consideration of Lubricants for Temperatures Above 1000°F, ASLE Trans., 1959, 2(2), p 225–234

    Google Scholar 

  27. S. Zhu, Q. Bi, M. Niu, J. Yang, and W. Liu, Tribological Behavior of NiAl Matrix Composites with Addition of Oxides at High Temperatures, Wear, 2012, 274, p 423–434

    Article  Google Scholar 

  28. R. Franz and C. Mitterer, Vanadium Containing Self-Adaptive Low-Friction Hard Coatings for High-Temperature Applications: A Review, Surf. Coat. Technol., 2013, 228, p 1–13

    Article  Google Scholar 

  29. N. Fateh, G. Fontalvo, G. Gassner, and C. Mitterer, The Beneficial Effect of High-Temperature Oxidation on the Tribological Behaviour of V and VN Coatings, Tribol. Lett., 2007, 28(1), p 1–7

    Article  Google Scholar 

  30. N. Fateh, G. Fontalvo, and C. Mitterer, Tribological Properties of Reactive Magnetron Sputtered V2O5 and VN–V2O5 Coatings, Tribol. Lett., 2008, 30(1), p 21–26

    Article  Google Scholar 

  31. E. Lugscheider, S. Bärwulf, and C. Barimani, Properties of Tungsten and Vanadium Oxides Deposited by MSIP–PVD Process for Self-Lubricating Applications, Surf. Coat. Technol., 1999, 120, p 458–464

    Article  Google Scholar 

  32. P. Mayrhofer, P.E. Hovsepian, C. Mitterer, and W.D. Münz, Calorimetric Evidence for Frictional Self-Adaptation of TiAlN/VN Superlattice Coatings, Surf. Coat. Technol., 2004, 177, p 341–347

    Article  Google Scholar 

  33. A. Voevodin, C. Muratore, and S. Aouadi, Hard Coatings with High Temperature Adaptive Lubrication and Contact Thermal Management: Review, Surf. Coat. Technol., 2014, 257, p 247–265

    Article  Google Scholar 

  34. R. Franz, J. Neidhardt, B. Sartory, R. Kaindl, R. Tessadri, P. Polcik et al., High-Temperature Low-Friction Properties Of Vanadium-Alloyed AlCrN Coatings, Tribol. Lett., 2006, 23(2), p 101–107

    Article  Google Scholar 

  35. A.M. Cao, J.S. Hu, H.P. Liang, and L.J. Wan, Self-Assembled Vanadium Pentoxide (V2O5) Hollow Microspheres from Nanorods and their Application in Lithium-Ion Batteries, Angew. Chem. Int. Ed., 2005, 44, p 4391–4395

    Article  Google Scholar 

  36. T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li et al., Centimeter-Long V2O5 Nanowires: From Synthesis to Field-Emission, Electrochemical, Electrical Transport, Photoconductive Properties, Adv. Mater., 2010, 22, p 2547–2552

    Article  Google Scholar 

  37. ASTM B962-08, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle, ASTM International, West Conshohocken, PA, 2008

    Google Scholar 

  38. ASTM E92-82, Standard Test Method for Vickers Hardness of Metallic Materials, ASTM International, West Conshohocken, PA, 2003

    Google Scholar 

  39. ASTM G99-95, Standard Test Method for Wear Testing with a Pin on Disk Apparatus, ASTM International, West Conshohocken, PA, 1995

    Google Scholar 

  40. V. Merlin and N. Eustathopoulos, Wetting and Adhesion of Ni–Al Alloys on α-Al2O3 Single Crystals, J. Mater. Sci., 1995, 30(14), p 3619–3624

    Article  Google Scholar 

  41. W. Zhang, J. Smith, and A. Evans, The Connection Between Ab Initio Calculations and Interface Adhesion Measurements on Metal/Oxide Systems: Ni/Al2O3 and Cu/Al2O3, Acta Mater., 2002, 50(15), p 3803–3816

    Article  Google Scholar 

  42. X.L. Shi, W.Z. Zhai, M. Wang, Z.S. Xu, J. Yao, S.Y. Song, A.Q.U. Din, and Q.X. Zhang, Tribological Performance of Ni3Al-15 wt.% Ti3SiC2 Composites Against Al2O3, Si3N4 and WC-6Co from 25 to 800 °C, Wear, 2013, 303, p 244–254

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Project for Science and Technology Plan of Wuhan City (2013010501010139) and the Key Project for Science and Technology Plan of Henan province (152102210119). Authors also wish to gratefully thank the Material Research and Testing Center of Wuhan University of Technology for their assistance. Authors were grateful to M.J. Yang, S.L. Zhao and W.T. Zhu in Material Research and Test Center of WUT for their kind help with EPMA and FESEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoliang Shi.

Additional information

Yuchun Huang and Ahmed Mohamed Mahmoud Ibrahim have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Ibrahim, A.M.M., Shi, X. et al. Tribological Characterization of NiAl Self-Lubricating Composites Containing V2O5 Nanowires. J. of Materi Eng and Perform 25, 4941–4951 (2016). https://doi.org/10.1007/s11665-016-2339-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2339-2

Keywords

Navigation