Skip to main content
Log in

Phase Transformation and Lattice Parameter Changes of Trivalent Rare Earth Doped YSZ as a Function of Temperature

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Yttria-stabilized zirconia (YSZ) co-doped with trivalent oxide Sc2O3 and Yb2O3 is prepared using mechanical alloying and high-temperature sintering. High-temperature XRD analysis was performed to study the phase transformation and lattice parameter changes of various phases in the baseline YSZ and co-doped samples. The results show that the structure for the co-doped samples tends to be more thermally stable at test temperature above critical value. The lattice parameters for all samples increase with temperature at which XRD is carried out, and the lattice parameters for the two trivalent rare earth oxides co-doped YSZ are smaller than that for 7YSZ under the same temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.L. Jones, Thermal Barrier Coatings, Metallurgical and Ceramic Protective Coatings, K.H. Stern, Ed., Chapman & Hall, London, 1996,

    Google Scholar 

  2. S.M. Meier and D.K. Gupta, The Evalution of the Thermal Barrier Coatings in Gas-Turbine Engine Applications, J. Eng. Gas Turb. Power, 1994, 116, p 250–257

    Article  Google Scholar 

  3. U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne, J.M. Dorvaux, M. Poulain, R. Mevrel, and M.L. Caliez, Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings, Aerosp. Sci. Technol., 2003, 7, p 73–80

    Article  Google Scholar 

  4. B. Leclercq, R. Mevrel, V. Liedtke, and W. Hohenauer, Thermal Conductivity of Zirconia-Based Ceramics for Thermal Barrier Coating, Materialwiss. Werkst., 2003, 34, p 406–409

    Article  Google Scholar 

  5. C.G. Levi, Emerging Materials and Processes for Thermal Barrier Systems, Curr. Opin. Solid State Mech., 2004, 8, p 77–91

    Article  Google Scholar 

  6. J.R. Nicholls, K.J. Lawson, A. Johnstone, and D.S. Rickerby, Methods to Reduce the Thermal Conductivity of EB-PVD TBCs, Surf. Coatings Technol., 2002, 151, p 383–391

    Article  Google Scholar 

  7. D. Zhu and R.A. Miller, Thermal Conductivity and Sintering Behaviour of Advanced Thermal Barrier Coatings, Ceram. Eng. Sci. Proc., 2002, 23, p 457–468

    Article  Google Scholar 

  8. J.S. Reed, Principles of Ceramic Processing, 2nd ed., Wiley-Interscience, New York, 1995

    Google Scholar 

  9. I.R. Gibson, G.P. Dransfield, and J.T.S. Irvine, Sinterability of Commercial 8 mol% Yttria-Stabilized Zirconia Powders and the Effect of Sintered Density on the Ionic Conductivity, J. Mater. Sci., 1998, 33, p 4297–4305

    Article  Google Scholar 

  10. M.N. Rahaman, Ceramic Processing and Sintering, 2nd ed., Marcel Dekker, New York, 2003

    Google Scholar 

  11. Material Data Inc. MDI Jade 6 User’s Manual, 2004.

  12. M. Leoni, R.L. Jones, and P. Scardi, Phase Stability of Scandia-Yttria-Stabilized Zirconia TBCs, Surf. Coatings Technol., 1998, 108, p 107–113

    Article  Google Scholar 

  13. W. Wang, S.Q. Qian, and H. Shen, Microstructure and Mechanical Properties of Yttria-Stabilized Zirconia Coatings Produced by Eletrophoretic Deposition and Microwave Sintering, Metall. Mater. Trans. A, 2011, 42A, p 3265–3268

    Article  Google Scholar 

  14. O. Fabrichnaya and H.J. Seifert, Thermodynamic Assessment of the ZrO2-Yb2O3-Al2O3 System, Calphad, 2010, 34, p 206–214

    Article  Google Scholar 

  15. J.H. Zhang, J.S. Yu, X. Cheng, and S.E. Hou, Thermal Expansion and Solubility Limits of Cerium-Doped Lanthanum Zirconates, JAllC, 2012, 525, p 78–81

    Google Scholar 

  16. A. Kuwabara, J. Katamura, Y. Ikuhara, and T. Sakuma, Influence of Interaction Between Neighboring Oxygen Ions on Phase Stability in Cubic Zirconia, J. Am. Ceram. Soc., 2002, 85, p 2557–2561

    Article  Google Scholar 

  17. P. Li, I.W. Chen, and J.E. Pennerhahn, X-Ray-Absorption Studies of Zirconia Polymorphs. 1. Characteristic Local Structures, Phys. Rev. B, 1993, 48, p 10063–10073

    Article  Google Scholar 

  18. A. Dwivedi and A.N. Cormack, A Computer-Simulation Study of the Defect Structure of Calcia-Stabilized Zirconia, Philos. Mag. A, 1990, 61, p 1–22

    Article  Google Scholar 

  19. M. Yashima, N. Ishizawa, and M. Yoshimura, High-Temperature X-RAY STUDY of the Cubic Tetragonal Diffusionless Phase-Transition in the ZrO2-ErO1.5 System. 2. Temperature Dependences of Oxygen-Ion Displacement and Lattice-Parameter of Compositionally Homogeneous 12 Mol-Percent ErO1.5-ZrO2, J. Am. Ceram. Soc., 1993, 76, p 649–656

    Article  Google Scholar 

  20. E.H. Kisi and C.J. Howard, Crystal Structures of Zirconia Phases and Their Inter-Relation, Key Eng. Mater., 1998, 153–154, p 1–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S.L., Huang, X. & He, Z. Phase Transformation and Lattice Parameter Changes of Trivalent Rare Earth Doped YSZ as a Function of Temperature. J. of Materi Eng and Perform 25, 4686–4694 (2016). https://doi.org/10.1007/s11665-016-2328-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2328-5

Keywords

Navigation