Skip to main content

Advertisement

Log in

Fabrication of Nano-SiC Particulate Reinforced Mg-8Al-1Sn Composites by Powder Metallurgy Combined with Hot Extrusion

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nano-SiC particulates (n-SiCp) reinforced Mg-8Al-1Sn (AT81) composites with different volume fractions (0, 0.25, 0.5 and 1.0 vol.%) were fabricated by powder metallurgy process (P/M) combined with hot extrusion. The mechanical properties of the composite increased as the n-SiCp content increased until the n-SiCp content exceeded 0.5 vol.%, at which point they began to decrease. For this reason, the 0.5 vol.% n-SiCp/AT81 composite was considered optimal. The 0.2% offset yield strength (YS), ultimate tensile strength (UTS) and elongation (ε) of 0.5 vol.% n-SiCp/AT81 composites increased from 175, 318 MPa and 4.5% to 239, 381 MPa and 8.3%, respectively, compared to AT81. Both, the strength and plasticity of the 0.5 vol.% n-SiCp/AT81 composites were improved as well. The improvement in mechanical properties can be attributed to the progressively refined matrix grain size, relatively uniform distribution of n-SiCP and the well-bonded interfaces between n-SiCp and the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X.Z. Zhang, L. Fang, B.J. Xiong, and H. Hu, Microstructure and tensile properties of Mg (AM60)/Al2O3 metal matrix composites with varying volume fractions of fiber reinforcement, J. Mater. Eng. Perform., 2015, 24(12), p 4601–4611

    Article  Google Scholar 

  2. A. Erman, J. Groza, X.C. Li, H. Choi, and G.P. Cao, Nanoparticle effects in cast Mg-1 wt.% SiC nano-composites, Mater. Sci. Eng. A, 2012, 558, p 39–43

    Article  Google Scholar 

  3. M. Manoharan, M. Gupta, M.O. Lai, and D. Saravanaranganathan, Application of model for work hardening behaviour of SiC reinforced magnesium based metal matrix composites, Mater. Sci. Technol., 2000, 16(6), p 670–674

    Article  Google Scholar 

  4. S.H. Park, J.G. Jung, Y.M. Kim, and B.S. You, A new high-strength extruded Mg-8Al-4Sn-2Zn alloy, Mater. Lett., 2015, 139, p 35–38

    Article  Google Scholar 

  5. R. Panicker, A.H. Chokshi, R.K. Mishra, R. Verma, and P.E. Krajewski, Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy, Acta Mater., 2009, 57(13), p 3683–3693

    Article  Google Scholar 

  6. S.C.V. Lim and M. Gupta, Enhancing the microstructural and mechanical response of a Mg/SiC formulation by the method of reducing extrusion temperature, Mater. Res. Bull., 2001, 36(15), p 2627–2636

    Article  Google Scholar 

  7. H. Ferkel and B.L. Mordike, Magnesium strengthened by SiC nanoparticles, Mater. Sci. Eng. A, 2001, 298(1–2), p 193–199

    Article  Google Scholar 

  8. E. Ayman, U. Junko, and K. Katsuyoshi, Application of rapid solidification powder metallurgy to the fabrication of high-strength, high-ductility Mg-Al-Zn-Ca-La alloy through hot extrusion, Acta Mater., 2011, 59(1), p 273–282

    Article  Google Scholar 

  9. X. Wang, M.L. Wu, W.L. Ma, Y. Lu, and S. Yuan, Achieving superplasticity in AZ31 magnesium alloy processed by hot extrusion and rolling, J. Mater. Eng. Perform., 2016, 25(1), p 64–67

    Article  Google Scholar 

  10. K.K. Kumar, A. Viswanath, T.P.D. Rajan, U.T.S. Pillai, and B.C. Pai, Physical, mechanical, and tribological attributes of stir-cast AZ91/SiCp composite, Acta Metall. Sin., 2014, 27(2), p 295–305

    Article  Google Scholar 

  11. H. Asgharzadeh, E.Y. Yoon, H.J. Chae, T.S. Kim, J.W. Lee, and H.S. Kim, Microstructure and mechanical properties of a Mg-Zn-Y alloy produced by a powder metallurgy route, J. Alloy. Compd., 2014, 586, p S95–S100

    Article  Google Scholar 

  12. Q.C. Jiang, H.Y. Wang, B.X. Ma, Y. Wang, and F. Zhao, Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy, J. Alloy. Compd., 2005, 386(1–2), p 177–181

    Article  Google Scholar 

  13. M. Shahzad, A.H. Qureshi, and H. Waqas, Influence of pre- and post-extrusion heat treatments on microstructure and anisotropy of mechanical properties in a Mg-Al-Zn alloy, Mater. Des., 2013, 51, p 870–875

    Article  Google Scholar 

  14. M. Yuasa, M. Hayashi, M. Mabuchi, and Y. Chino, Improved plastic anisotropy of Mg-Zn-Ca alloys exhibiting high-stretch formability: a first-principles study, Acta Mater., 2014, 65, p 207–214

    Article  Google Scholar 

  15. A. Bochenek and K.N. Braszczyn, Structural analysis of the MgAl5 matrix cast composites containing SiC particles, Mater. Sci. Eng. A, 2000, 290, p 122–127

    Article  Google Scholar 

  16. A. Stern and M. Aizenshtein, Magnetic pulse welding of Al to Mg alloys: structural–mechanical properties of the interfacial layer, Mater. Sci. Technol., 2011, 27(12), p 1809–1813

    Article  Google Scholar 

  17. A. Janz, J. Grobner, and R. Schmid-Fetzer, Thermodynamics and Constitution of Mg-Al-Ca-Sr-Mn alloys: part II. Procedure for multicomponent key sample selection and application to the Mg-Al-Ca-Sr and Mg-Al-Ca-Sr-Mn systems, J. Mater. Eng. Perform., 2009, 30(2), p 157–175

    Google Scholar 

  18. A.A. Luo, P. Fu, L. Peng, X. Kang, Z. Li, and T. Zhu, Solidification microstructure and mechanical properties of cast magnesium-aluminum-tin alloys, Metall. Mater. Trans. A, 2011, 43(1), p 360–368

    Article  Google Scholar 

  19. J.G. Jung, S.H. Park, H. Yu, Y.M. Kim, Y.K. Lee, and B.S. You, Improved mechanical properties of Mg-7.6Al-0.4Zn alloy through aging prior to extrusion, Scr. Mater., 2014, 93, p 8–11

    Article  Google Scholar 

  20. V. Kumar, R. Shekhar, and K. Balani, Corrosion Behavior of Novel Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys in NaCl aqueous solution, J. Mater. Eng. Perform., 2015, 24(10), p 4060–4070

    Article  Google Scholar 

  21. Z.Z. Shi, F.Z. Dai, and W.Z. Zhang, Crystallography of Mg2Sn precipitates with two newly observed orientation relationships in an Mg–Sn–Mn alloy, Mater. Sci. Technol., 2012, 28(4), p 411–414

    Article  Google Scholar 

  22. D. Luo, H.Y. Wang, L. Chen, G.J. Liu, J.G. Wang, and Q.C. Jiang, Strong strain hardening ability in an as-cast Mg-3Sn-1Zn alloy, Mater. Lett., 2013, 94, p 51–54

    Article  Google Scholar 

  23. G.K. Meenashisundaram, S. Seetharaman, and M. Gupta, Enhancing overall tensile and compressive response of pure Mg using nano-TiB2 particulates, Mater. Charact., 2014, 94, p 178–188

    Article  Google Scholar 

  24. A.R. Vaidya and J.J. Lewandowski, Effects of SiCp size and volume fraction on the high cycle fatigue behavior of AZ91D magnesium alloy composites, Mater. Sci. Eng. A, 1996, 220, p 85–92

    Article  Google Scholar 

  25. Y.L. Liao and G.J. Cheng, Controlled precipitation by thermal engineered laser shock peening and its effect on dislocation pinning: multiscale dislocation dynamics simulation and experiments, Acta Mater., 2013, 61(6), p 1957–1967

    Article  Google Scholar 

  26. X.Z. Zhang, T.J. Chen, and Y.H. Qin, Effects of solution treatment on tensile properties and strengthening mechanisms of SiCp/6061Al composites fabricated by powder thixoforming, Mater. Des., 2016, 99, p 182–192

    Google Scholar 

  27. L. Gao, R.S. Chen, and E.H. Han, Microstructure and strengthening mechanisms of a cast Mg-1.48Gd-1.13Y-0.16Zr (at.%) alloy, J. Mater. Sci., 2009, 44(16), p 4443–4454

    Article  Google Scholar 

  28. P. Ma, Z.J. Wei, Y.D. Jia, C.M. Zou, S. Scudino, K.G. Prashanth, Z.S. Yu, S.L. Yang, C.G. Li, and J. Eckert, Effect of high pressure solidification on tensile properties and strengthening mechanisms of Al-20Si, J. Alloy. Compd., 2016, 688, p 88–93

    Article  Google Scholar 

  29. A. Mazahery, H. Abdizadeh, and H.R. Baharvandi, Development of high-performance A356/nano-Al2O3 composites, Mater. Sci. Eng. A, 2009, 518, p 61–64

    Article  Google Scholar 

  30. X.J. Wang, N.Z. Wang, L.Y. Wang, X.S. Hu, K. Wu, Y.Q. Wang, and Y.D. Huang, Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing, Mater. Des., 2014, 57, p 638–645

    Article  Google Scholar 

  31. K.S. Tun and M. Gupta, Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method, Compos. Sci. Technol., 2007, 67(13), p 2657–2664

    Article  Google Scholar 

Download references

Acknowledgment

Financial supports from the National Basic Research Program of China (973 Program, No. 2012CB619600), the Natural Science Foundation of China (No. 51474111) and Science and Technology Development Project of Jilin Province (No. 20160519002JH) are greatly acknowledged. Partial financial supports come from the Fundamental Research Funds for the Central Universities (JCKY-QKJC02) and The ChangBai Mountain Scholars Program (2013014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Yuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CP., Wang, ZG., Wang, HY. et al. Fabrication of Nano-SiC Particulate Reinforced Mg-8Al-1Sn Composites by Powder Metallurgy Combined with Hot Extrusion. J. of Materi Eng and Perform 25, 5049–5054 (2016). https://doi.org/10.1007/s11665-016-2326-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2326-7

Keywords

Navigation