Skip to main content

Advertisement

Log in

Microstructure and Low-Temperature Mechanical Properties of 304 Stainless Steel Joints by PAW + GTAW Combined Welding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The combined double-pass process of plasma arc welding (PAW) + gas tungsten arc welding (GTAW) was performed on 304 austenitic stainless steel with the thickness of 12 mm. Results indicated that two different morphologies of ferrite (e.g., lathy δ-ferrite and skeletal δ-ferrite) were formed within the austenite matrix in PAW weld metal (PAW-WM). GTAW weld metal (GTAW-WM) was mainly composed of fine austenite and skeletal δ-ferrite. In transition zone between PAW-WM and GTAW-WM, epitaxial growth contributed to cellular dendritic crystals transforming into columnar crystals. The tensile strength of joint is about 700 MPa. The impact toughness of WM varied from 281 J (20 °C) to 122 (−196 °C), while the impact toughness of heat-affected zone (HAZ) varied from 205 J (20 °C) to 112 J (−196 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K. Yıldızlı, Investigation on the microstructure and toughness properties of austenitic and duplex stainless steels weldments under cryogenic conditions, Mater. Des., 2015, 77, p 83–94

    Article  Google Scholar 

  2. S. Kumar and A.S. Shahi, On the influence of welding stainless steel on microstructural development and mechanical performance, Mater. Manuf. Processes, 2014, 29, p 894–902

    Article  Google Scholar 

  3. Y. Cui, C.D. Lundin, and V. Hariharan, Mechanical behavior of austenitic stainless steel weld metals with microfissures, J. Mater. Process. Technol., 2006, 171, p 150–155

    Article  Google Scholar 

  4. R. Unnikrishnan, K.S.N.S. Idury, T.P. Ismail, A. Bhadauria, S.K. Shekhawat, R.K. Khatirkar, and S.G. Sapate, Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments, Mater. Charact., 2014, 93, p 10–23

    Article  Google Scholar 

  5. A. Bhattacharya and R. Kumar, Dissimilar joining between austenitic and duplex stainless steel in double-shielded GMAW: a comparative study, Mater. Manuf. Processes, 2016, 31, p 300–310

    Article  Google Scholar 

  6. R. Kumar, A. Bhattacharya, and T.K. Bera, Mechanical and metallurgical studies in double shielded GMAW of dissimilar stainless steels, Mater. Manuf. Processes, 2015, 30, p 1146–1153

    Article  Google Scholar 

  7. Y. Li, S. Hu, and J. Shen, The effect of peak power and pulse duration for dissimilar welding of brass to stainless steel, Mater. Manuf. Processes, 2014, 29, p 922–927

    Article  Google Scholar 

  8. G.R. Mirshekari, E. Tavakoli, M. Atapour, and B. Sadeghian, Microstructure and corrosion behavior of multipass gas tungsten arc welded 304L stainless steel, Mater. Des., 2014, 55, p 905–911

    Article  Google Scholar 

  9. Y. Li, S. Hu, J. Shen, and B. Hu, Dissimilar welding of H62 brass-316L stainless steel using continuous-wave Nd: YAG laser, Mater. Manuf. Processes, 2014, 29, p 916–921

    Article  Google Scholar 

  10. S. Tathgir and A. Bhattacharya, Activated-TIG welding of different steels: influence of various flux and shielding gas, Mater. Manuf. Processes, 2016, 31, p 335–342

    Article  Google Scholar 

  11. P. Sathiya, M.K. Mishra, and B. Shanmugarajan, Effect of shielding gases on microstructure and mechanical properties of super austenitic stainless steel by hybrid welding, Mater. Des., 2012, 33, p 203–212

    Article  Google Scholar 

  12. K.D. Ramkumar, D. Mishra, B.G. Raj, M. Vignesh, G. Thiruvengatam, S. Sudharshan, N. Arivazhagan, N. Sivashanmugam, and A.M. Rabel, Effect of optimal weld parameters in the microstructure and mechanical properties of autogeneous gas tungsten arc weldments of super-duplex stainless steel UNS S32750, Mater. Des., 2015, 66, p 356–365

    Article  Google Scholar 

  13. Y. Feng, Z. Luo, Z. Liu, Y. Li, Y. Luo, and Y. Huang, Keyhole gas tungsten arc welding of AISI, 316L stainless steel, Mater. Des., 2015, 85, p 24–31

    Google Scholar 

  14. E. Zumelzu, J. Sepúlveda, and M. Ibarra, Influence of microstructure on the mechanical behaviour of welded 316 L SS joints, J. Mater. Process. Technol., 1999, 94, p 36–40

    Article  Google Scholar 

  15. A. Durgutlu, Experimental investigation of the effect of hydrogen in argon as a shielding gas on TIG welding of austenitic stainless steel, Mater. Des., 2004, 25, p 19–23

    Article  Google Scholar 

  16. V.D. Vijayanand, K. Laha, P. Parameswaran, V. Ganesan, and M.D. Mathew, Microstructural evolution during creep of 316LN stainless steel multi-pass weld joints, Mater. Sci. Eng., A, 2014, 607, p 138–144

    Article  Google Scholar 

  17. A. Pascu, E.M. Stanciu, I. Voiculescu, M.H. Ţierean, I.C. Roată, and J.L. Ocaña, Chemical and mechanical characterization of AISI, 304 and AISI, 1010 laser welding, Mater. Manuf. Processes, 2016, 31, p 311–318

    Article  Google Scholar 

  18. K.C. Ganesh, M. Vasudevan, K.R. Balasubramanian, N. Chandrasekhar, and P. Vasantharaja, Thermo-mechanical analysis of TIG welding of AISI, 316LN stainless steel, Mater. Manuf. Processes, 2014, 29, p 903–909

    Article  Google Scholar 

  19. E. Taban, E. Kaluc, and A. Dhooge, Hybrid (plasma + gas tungsten arc) weldability of modified 12% Cr ferritic stainless steel, Mater. Des., 2009, 30, p 4236–4242

    Article  Google Scholar 

  20. J.N. DuPont and A.R. Marder, Thermal efficiency of arc welding processes, Weld. J., 1995, 74, p 406–416

    Google Scholar 

  21. M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar, and A. Saatchi, Effect of TIG welding on corrosion behavior of 316L stainless steel, Mater. Lett., 2007, 61, p 2343–2346

    Article  Google Scholar 

  22. W.S. Lee and C.F. Lin, Impact properties and microstructure evolution of 304L stainless steel, Mater. Sci. Eng. A, 2001, 308, p 124–135

    Article  Google Scholar 

  23. H. Ma, G. Qin, P. Geng, F. Li, B. Fu, and X. Meng, Microstructure characterization and properties of carbon steel to stainless steel dissimilar metal joint made by friction welding, Mater. Des., 2015, 86, p 587–597

    Google Scholar 

  24. M. Gao, X. Zeng, J. Yan, and Q. Hu, Microstructure characteristics of laser–MIG hybrid welded mild steel, Appl. Surf. Sci., 2008, 254, p 5715–5721

    Article  Google Scholar 

  25. T. Teker, The effect of austenitic interlayer on microstructure and mechanical behaviors in keyhole plasma transfer arc welding of ferritic stainless steel couple, Int. J. Adv. Manuf. Technol., 2013, 69, p 1833–1840

    Article  Google Scholar 

  26. T. Teker and N. Ozdemir, Weldability and joining characteristics of AISI, 430/AISI, 1040 steels using keyhole plasma arc welding, Int. J. Adv. Manuf. Technol., 2012, 63, p 117–128

    Article  Google Scholar 

  27. A. Ureña, E. Otero, M.V. Utrilla, and C.J. Múnez, Weldability of a 2205 duplex stainless steel using plasma arc welding, J. Mater. Process. Technol., 2007, 182, p 624–631

    Article  Google Scholar 

  28. C.Y. Cui, X.G. Cui, X.D. Ren, T.T. Liu, J.D. Hu, and Y.M. Wang, Microstructure and microhardness of fiber laser butt welded joint of stainless steel plates, Mater. Des., 2013, 49, p 761–765

    Article  Google Scholar 

  29. P. Zhang, S.X. Li, and Z.F. Zhang, General relationship between strength and hardness, Mater. Sci. Eng. A, 2011, 529, p 62–73

    Article  Google Scholar 

  30. I. Brooks, P. Lin, G. Palumbo, G.D. Hibbard, and U. Erb, Analysis of hardness-tensile strength relationships for electroformed nanocrystalline materials, Mater. Sci. Eng. A, 2008, 491, p 412–419

    Article  Google Scholar 

  31. S.H. Hashemi, Strength-hardness statistical correlation in API, X65 steel, Mater. Sci. Eng. A, 2011, 528, p 1648–1655

    Article  Google Scholar 

  32. P. Sathiya, S. Aravindan, and A.N. Haq, Effect of friction welding parameters on mechanical and metallurgical properties of ferritic stainless steel, Int. J. Adv. Manuf. Technol., 2007, 31, p 1076–1082

    Article  Google Scholar 

  33. H. Kim, Y. Ha, K.H. Kwon, M. Kang, N.J. Kim, and S. Lee, Interpretation of cryogenic-temperature Charpy impact toughness by microstructural evolution of dynamically compressed specimens in austenitic 0.4 C–(22–26) Mn steels, Acta Mater., 2015, 87, p 332–343

    Article  Google Scholar 

  34. K. Chandra, V. Kain, V. Bhutani, V.S. Raja, R. Tewari, G.K. Dey, and J.K. Chakravartty, Low temperature thermal aging of austenitic stainless steel welds: kinetics and effects on mechanical properties, Mater. Sci. Eng. A, 2012, 534, p 163–175

    Article  Google Scholar 

  35. J.H. Kim, S.W. Choi, D.H. Park, and J.M. Lee, Charpy impact properties of stainless steel weldment in liquefied natural gas pipelines: effect of low temperatures, Mater. Des., 2015, 65, p 914–922

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by National Natural Science Foundation of China (Grant No. 51575316) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2015EM040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Li, Y. & Wang, J. Microstructure and Low-Temperature Mechanical Properties of 304 Stainless Steel Joints by PAW + GTAW Combined Welding. J. of Materi Eng and Perform 25, 4561–4573 (2016). https://doi.org/10.1007/s11665-016-2288-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2288-9

Keywords

Navigation