Skip to main content
Log in

Shape-Controllable Synthesis of Peroxidase-Like Fe3O4 Nanoparticles for Catalytic Removal of Organic Pollutants

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The shape of Fe3O4 nanoparticles is controlled using a simple oxidation-precipitation method without any surfactant. The morphology and structure of the obtained Fe3O4 nanoparticles were characterized by using x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, N2 physisorption and vibrating sample magnetometer. As-prepared Fe3O4 samples showed octahedron, cube, hexagonal plate and sphere morphologies. Peroxidase-like activity of the four nanostructures was evaluated for catalytic removal of organic pollutants in the presence of H2O2, using rhodamine B as a model compound. The results showed that the H2O2-activating ability of the Fe3O4 nanocrystals was structure dependent and followed the order sphere > cube > octahedron > hexagonal plate, which was closely related to their surface FeII/FeIII ratios or crystal planes. The reusability of Fe3O4 spheres was also investigated after five successive runs, which demonstrated the promising application of the catalyst in the degradation of organic pollutants. This investigation is of great significance for the heterogeneous catalysts with enhanced activity and practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Li, X. Qiu, Y. Lin, X. Liu, R. Gao, and A. Wang, A Study of Modified Fe3O4 Nanoparticles for the Synthesis of Ionic Ferrofluids, Appl. Surf. Sci., 2010, 256, p 6977–6981

    Article  Google Scholar 

  2. A.H. Lu, E.L. Salabas, and F. Schüth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angew. Chem. Int. Ed., 2007, 46, p 1222–1244

    Article  Google Scholar 

  3. Z. Wang, M. Xing, W. Fang, and D. Wu, One-Step Synthesis of Magnetite Core/Zirconia Shell Nanocomposite for High Efficiency Removal of Phosphate from Water, Appl. Surf. Sci., 2016, 366, p 67–77

    Article  Google Scholar 

  4. R.D. Ambashta and M. Sillanpää, Water Purification Using Magnetic Assistance: A Review, J. Hazard. Mater., 2010, 180, p 38–49

    Article  Google Scholar 

  5. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, and X. Yan, Intrinsic Peroxidase-Like Activity of Ferromagnetic Nanoparticles, Nat. Nanotechnol., 2007, 2, p 577–583

    Article  Google Scholar 

  6. J. Zhang, J. Zhuang, L. Gao, Y. Zhang, N. Gu, J. Feng, D. Yang, J. Zhu, and X. Yan, Decomposing Phenol by the Hidden Talent of Ferromagnetic Nanoparticles, Chemosphere, 2008, 73, p 1524–1528

    Article  Google Scholar 

  7. X. Xue, K. Hanna, M. Abdelmoula, and N. Deng, Adsorption and Oxidation of PCP on the Surface of Magnetite: Kinetic Experiments and Spectroscopic Investigations, Appl. Catal. B Environ., 2009, 89, p 432–440

    Article  Google Scholar 

  8. S. Zhang, X. Zhao, H. Niu, Y. Shi, Y. Cai, and G. Jiang, Superparamagnetic Fe3O4 Nanoparticles as Catalysts for the Catalytic Oxidation of Phenolic and Aniline Compounds, J. Hazard. Mater., 2009, 167, p 560–566

    Article  Google Scholar 

  9. N. Wang, L. Zhu, D. Wang, M. Wang, Z. Lin, and H. Tang, Sono-Assisted Preparation of Highly-Efficient Peroxidase-Like Fe3O4 Magnetic Nanoparticles for Catalytic Removal of Organic Pollutants with H2O2, Ultrason. Sonochem., 2010, 17, p 526–533

    Article  Google Scholar 

  10. S.P. Sun and A.T. Lemley, p-Nitrophenol Degradation by a Heterogeneous Fenton-Like Reaction on Nano-Magnetite: Process Optimization, Kinetics, and Degradation Pathways, J. Mol. Catal. A Chem., 2011, 349, p 71–79

    Article  Google Scholar 

  11. L. Xu and J. Wang, Fenton-Like Degradation of 2,4-Dichlorophenol using Fe3O4 Magnetic Nanoparticles, Appl. Catal. B Environ., 2012, 123-124, p 117–126

    Article  Google Scholar 

  12. R.C.C. Costa, M.F.F. Lelis, L.C.A. Oliveira, J.D. Fabris, J.D. Ardisson, R.R.V.A. Rios, C.N. Silva, and R.M. Lago, Novel Active Heterogeneous Fenton System Based on Fe3−xMxO4 (Fe Co, Mn, Ni): The Role of M2+ Species on the Reactivity Towards H2O2 Reactions, J. Hazard. Mater., 2006, B129, p 171–178

    Article  Google Scholar 

  13. K.B. Zhou, R.P. Wang, B.Q. Xu, and Y.D. Li, Synthesis, Characterization and Catalytic Properties of CuO Nanocrystals with Various Shapes, Nanotechnology, 2006, 17, p 3939–3943

    Article  Google Scholar 

  14. L.H. Hu, Q. Peng, and Y.D. Li, Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion, J. Am. Chem. Soc., 2008, 130, p 16136–16137

    Article  Google Scholar 

  15. T. Xie, M. Gong, Z. Niu, S. Li, X. Yan, and Y. Li, Shape-Controlled CuCl Crystallite Catalysts for Aniline Coupling, Nano Res., 2010, 3, p 174–179

    Article  Google Scholar 

  16. S. Liu, F. Lu, R. Xing, and J.J. Zhu, Structural Effects of Fe3O4 Nanocrystals on Peroxidase-Like Activity, Chem. Eur. J., 2011, 17, p 620–625

    Article  Google Scholar 

  17. N. Puvvada, P.K. Panigrahi, D. Mandal, and A. Pathak, Shape Dependent Peroxidase Mimetic Activity Towards Oxidation of Pyrogallol by H2O2, RSC Adv., 2012, 2, p 3270–3273

    Article  Google Scholar 

  18. L. Hou, Q. Zhang, F. Jérôme, D. Duprez, H. Zhang, and S. Royer, Shape-Controlled Nanostructured Magnetite-Type Materials as Highly Efficient Fenton Catalysts, Appl. Catal. B Environ., 2014, 144, p 739–749

    Article  Google Scholar 

  19. Z. Cheng, X. Chu, J. Yin, H. Zhong, and J. Xu, Surfactantless Synthesis of Fe3O4 Magnetic Nanobelts by a Simple Hydrothermal Process, Mater. Lett., 2012, 75, p 172–174

    Article  Google Scholar 

  20. S. Asuha, B. Suyala, X. Siqintana, and S. Zhao, Direct Synthesis of Fe3O4 Nanopowder by Thermal Decomposition of Fe-Urea Complex and Its Properties, J. Alloys Compd., 2011, 509, p 2870–2873

    Article  Google Scholar 

  21. A. Prakash, A.V. McCormick, and M.R. Zachariah, Aero-Sol-Gel Synthesis of Nanoporous Iron-Oxide Particles: A Potential Oxidizer for Nanoenergetic Materials, Chem. Mater., 2004, 16, p 1466–1471

    Article  Google Scholar 

  22. K. Petcharoen and A. Sirivat, Synthesis and Characterization of Magnetite Nanoparticles Via the Chemical Co-Precipitation Method, Mat. Sci. Eng. B, 2012, 177, p 421–427

    Article  Google Scholar 

  23. W. Yu, T. Zhang, J. Zhang, X. Qiao, L. Yang, and Y. Liu, The Synthesis of Octahedral Nanoparticles of Magnetite, Mater. Lett., 2006, 60, p 2998–3001

    Article  Google Scholar 

  24. J. Chen, F. Wang, K. Huang, Y. Liu, and S. Liu, Preparation of Fe3O4 Nanoparticles with Adjustable Morphology, J. Alloys Compd., 2009, 475, p 898–902

    Article  Google Scholar 

  25. X. Zhou, Y. Shi, L. Ren, S. Bao, Y. Han, S. Wu, H. Zhang, L. Zhong, and Q. Zhang, Controllable Synthesis, Magnetic and Biocompatible Properties of Fe3O4 and α-Fe2O3 Nanocrystals, J. Solid State Chem., 2012, 196, p 138–144

    Article  Google Scholar 

  26. X. Xue, K. Hanna, and N. Deng, Fenton-Like Oxidation of Rhodamine B in the Presence of Two Types of Iron(II, III) Oxide, J. Hazard. Mater., 2009, 166, p 407–414

    Article  Google Scholar 

  27. P.P. Gan and S.F.Y. Li, Efficient Removal of Rhodamine B Using a Rice Hull-Based Silica Supported Iron Catalyst by Fenton-Like Process, Chem. Eng. J., 2013, 229, p 351–363

    Article  Google Scholar 

  28. X. Wang, Y. Pan, Z. Zhu, and J. Wu, Efficient Degradation of Rhodamine B Using Fe-Based Metallic Glass Catalyst by Fenton-Like Process, Chemosphere, 2014, 117, p 638–643

    Article  Google Scholar 

  29. S.K. Giri and N.N. Das, Visible Light Induced Photocatalytic Decolourisation of Rhodamine B by Magnetite Nanoparticles Synthesized Using Recovered Iron from Waste Iron Ore Tailing, Desalin. Water Treat., 2016, 2, p 900–907

    Article  Google Scholar 

  30. Y. Gao, Y. Wang, and H. Zhang, Removal of Rhodamine B with Fe-Supported Bentonite as Heterogeneous Photo-Fenton Catalyst Under Visible Irradiation, Appl. Catal. B Environ., 2015, 178, p 29–36

    Article  Google Scholar 

  31. L. Chen, C. Deng, F. Wu, and N. Deng, Decolorization of the Azo Dye Orange II, in a Montmorillonite/H2O2 System, Desalination, 2011, 281, p 306–311

    Article  Google Scholar 

  32. T. Yamashita and P. Hayes, Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials, Appl. Surf. Sci., 2008, 254, p 2441–2449

    Article  Google Scholar 

  33. S. Kaya, H. Ogasawara, and A. Nilsson, Determination of the Surface Electronic Structure of Fe3O4 (111) by Soft X-Ray Spectroscopy, Catal. Today, 2015, 240, p 184–189

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Natural Science Foundation of Hubei Province under Grant (2014CFB810), Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant (20114219110002) and Science and Technology Project (Major) of Jiangxi Province under Grant (20152ACG70003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbing Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, D., Li, W., Wang, G. et al. Shape-Controllable Synthesis of Peroxidase-Like Fe3O4 Nanoparticles for Catalytic Removal of Organic Pollutants. J. of Materi Eng and Perform 25, 4333–4340 (2016). https://doi.org/10.1007/s11665-016-2283-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2283-1

Keywords

Navigation