Skip to main content
Log in

Influence of Addition of Nb on Phase Transformation, Microstructure and Mechanical Properties of Equiatomic NiTi SMA

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Three novel NiTiNb shape memory alloys, which possess a nominal chemical composition of Ni50−x/2-Ti50−x/2-Nb x (at.%) where x stands for 2, 4 and 6, respectively, were designed in order to investigate the influence of the addition of Nb on phase transformation, microstructure and mechanical properties of equiatomic NiTi shape memory alloy. All the three NiTiNb shape memory alloys contain B2 austenite phase, B19′ martensite phase and β-Nb precipitate phase. Martensite type II twin can be observed in the case of Ni49Ti49Nb2 alloy. In the case of Ni48Ti48Nb4 alloy, there exists a boundary between Ti2Ni precipitate phase and β-Nb precipitate phase. As for Ni47Ti47Nb6 alloy, it can be observed that there exists an orientation relationship of \( [01\bar{1}]_{{\upbeta{\text{ - Nb}}}} //[01\bar{1}]_{\text{B2}} \) between β-Nb precipitate phase and B2 austenite matrix. The increase in Nb content contributes to enhancing the yield stress of NiTiNb shape memory alloy, but it leads to the decrease in compression fracture stress. The addition of Nb to equiatomic NiTi shape memory alloy does not have a significant influence on the transformation hysteresis of the alloy, which is attributed to the fact that NiTiNb shape memory alloy is not subjected to plastic deformation and hence β-Nb precipitate phase is unable to relax the elastic strain in the martensite interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-based Shape Memory Alloys, Prog. Mater. Sci., 2005, 50(5), p 511–678

    Article  Google Scholar 

  2. H. Mirzadeh and M.H. Parsa, Hot Deformation and Dynamic Recrystallization of NiTi Intermetallic Compound, J. Alloys Compd., 2014, 614, p 56–59

    Article  Google Scholar 

  3. C.H. Kuang, C. Chien, and S.K. Wu, Multistage Martensitic Transformation in High Temperature Aged Ti48Ni52 Shape Memory Alloy, Intermetallics, 2015, 67, p 12–18

    Article  Google Scholar 

  4. X. Wang, B. Verlinden, and J.V. Humbeeck, Effect of Post-Deformation Annealing on the R-Phase Transformation Temperatures in NiTi Shape Memory Alloys, Intermetallics, 2015, 62, p 43–49

    Article  Google Scholar 

  5. L. Gou, Y. Liu, and T.Y. Ng, An Investigation on the Crystal Structures of Ti50Ni50−xCux Shape Memory Alloys Based on Density Functional Theory Calculations, Intermetallics, 2014, 53, p 20–50

    Article  Google Scholar 

  6. N. Jones and D. Dye, Influence of Applied Stress on the Transformation Behaviour and Martensite Evolution of a Ti-Ni-Cu Shape Memory Alloy, Intermetallics, 2013, 32, p 239–249

    Article  Google Scholar 

  7. T. Goryczka and P. Ochin, Microstructure, Texture and Shape Memory Effect in Ni25Ti50Cu25 Ribbons and Strips, Mater. Sci. Eng. A, 2006, 438–440, p 714–718

    Article  Google Scholar 

  8. X.M. He, L.Z. Zhao, S.F. Zhang, S.W. Duo, and R.F. Zhang, Study of the Thermal Physical Properties of Ti47Ni44Nb9 Wide Hysteresis Shape Memory Alloy, Mater. Sci. Eng. A, 2006, 441(1–2), p 167–169

    Article  Google Scholar 

  9. X.M. He, L.J. Rong, D.S. Yan, and Y.Y. Li, TiNiNb Wide Hysteresis Shape Memory Alloy with Low Niobium Content, Mater. Sci. Eng. A, 2004, 371(1–2), p 193–197

    Article  Google Scholar 

  10. X. Zhao, X. Yan, Y. Yang, and H. Xu, Wide Hysteresis NiTi(Nb) Shape Memory Alloys with Low Nb Content (4.5 at.%), Mater. Sci. Eng. A, 2006, 438–440, p 575–578

    Article  Google Scholar 

  11. M. Xiao, F. Li, W. Zhao, and G. Yang, Constitutive Equation for Elevated Temperature Flow Behavior of TiNiNb Alloy Based on Orthogonal Analysis, Mater. Des., 2012, 35, p 184–193

    Article  Google Scholar 

  12. Z. Bao, S. Guo, F. Xiao, and X. Zhao, Development of NiTiNb In-Situ Composite with High Damping Capacity and High Yield Strength, Prog. Nat. Sci., 2011, 21(4), p 293–300

    Article  Google Scholar 

  13. Y. Li, X. Kang, X. Yin, H. Xie, and X. Mi, Microstructure and Mechanical Properties of Cold-Rolled Ti50Ni47Fe3 Shape Memory Alloy, Trans. Nonferrous Met. Soc. China, 2014, 24(9), p 2890–2895

    Article  Google Scholar 

  14. S. Xue, W. Wang, D. Wu, Q. Zhai, and H. Zheng, On the Explanation for the Time-Dependence of B2 to R Martensitic Transformation in Ti50Ni47Fe3 Shape Memory Alloy, Mater. Lett., 2012, 72, p 119–121

    Article  Google Scholar 

  15. X.B. Yuan, B. Chen, F.S. Liu, Q. Xu, and W. Ma, Transformation Behaviors and Superelasticity of Ti50Ni48Fe2 Shape Memory Alloy Subjected to Cold-Rolling and Subsequent Annealing, Rare Met., 2014, 33(6), p 652–656

    Article  Google Scholar 

  16. R. Basu, M. Eskandari, L. Upadhayay, M.A. Mohtadi-Bonab, and J.A. Szpunar, A Systematic Investigation on the Role of Microstructure on Phase Transformation Behavior in Ni-Ti-Fe Shape Memory Alloys, J. Alloys Compd., 2015, 645, p 213–222

    Article  Google Scholar 

  17. G. Fan, Y. Zhou, K. Otsuka, X. Ren, T. Suzuki, and F. Yin, Comparison of the Two Relaxation Peaks in the Ti50Ni48Fe2 Alloy, Mater. Sci. Eng. A, 2009, 521–522, p 178–181

    Article  Google Scholar 

  18. E. Mohammad Sharifi, A. Kermanpur, and F. Karimzadeh, The Effect of Thermomechanical Processing on the Microstructure and Mechanical Properties of the Nanocrystalline TiNiCo Shape Memory Alloy, Mater. Sci. Eng. A., 2014, 598, p 183–189

    Article  Google Scholar 

  19. K.S. Suresh, D. Kim, S.K. Bhaumik, and S. Suwas, Evolution and Stability of Phases in a High Temperature Shape Memory Alloy Ni49.4Ti38.6Hf12, Intermetallics, 2014, 44, p 18–25

    Article  Google Scholar 

  20. L. Patriarca and H. Sehitoglu, High-Temperature Superelasticity of Ni50.6Ti24.4Hf25.0 Shape Memory Alloy, Scr. Mater., 2015, 101, p 12–15

    Article  Google Scholar 

  21. M. Prasher and D. Sen, Influence of Aging on Phase Transformation and Microstructure of Ni50.3Ti29.7Hf20 High Temperature Shape Memory Alloy, J. Alloys Compd., 2014, 615, p 469–474

    Article  Google Scholar 

  22. A. Evirgen, I. Karaman, R. Santamarta, J. Pons, and R.D. Noebe, Microstructural CHARACTErization and Superelastic Response of a Ni50.3Ti29.7Zr20 High-Temperature Shape Memory Alloy, Scripta Mater., 2014, 81, p 12–15

    Article  Google Scholar 

  23. K.V. Ramaiah, C.N. Saikrishna, Gouthama, and S.K. Bhaumik, Ni24.7Ti50.3Pd25.0 High Temperature Shape Memory Alloy with Narrow Thermal Hysteresis and High Thermal Stability, Mater. Des., 2014, 56, p 78–83

    Article  Google Scholar 

  24. L. Kovarik, F. Yang, A. Garg, D. Diercks, M. Kaufman, R.D. Noebe, and M.J. Mills, Structural Analysis of a New Precipitate Phase in High-Temperature TiNiPt Shape Memory Alloys, Acta Mater., 2010, 58(14), p 4660–4673

    Article  Google Scholar 

  25. Y. Chen, H. Jiang, L. Rong, L. Xiao, and X. Zhao, Mechanical Behavior in NiTiNb Shape Memory Alloys with Low Nb Content, Intermetallics, 2011, 19(2), p 217–220

    Article  Google Scholar 

  26. M. Wang, M. Jiang, G. Liao, S. Guo, and X. Zhao, Martensitic Transformation Involved Mechanical Behaviors and wide Hysteresis of NiTiNb Shape Memory Alloys, Prog. Nat. Sci., 2012, 22(2), p 130–138

    Article  Google Scholar 

  27. B. Piotrowski, T. Ben Zineb, E. Patoor, and A. Eberhardt, Modeling of Niobium Precipitates Effect on the Ni47Ti44Nb9 Shape Memory Alloy Behavior, Int. J. Plast., 2012, 36, p 130–147

    Article  Google Scholar 

  28. G.A. Sun, X.L. Wang, Y.D. Wang, W.C. Woo, H. Wang, X.P. Liu, B. Chen, Y.Q. Fu, L.S. Sheng, and Y. Ren, In-Situ High-Energy Synchrotron x-ray Diffraction Study of Micromechanical Behavior of Multiple Phases in Ni47Ti44Nb9 Shape Memory Alloy, Mater. Sci. Eng. A, 2013, 560, p 458–465

    Article  Google Scholar 

  29. X. Chen, X. Peng, B. Chen, J. Han, Z. Zeng, and N. Hu, Experimental Investigation to Thermal–Mechanical Behavior of Ni47Ti44Nb9 SMA Under Pure Tension and Pure Torsion, J. Alloys Compd., 2014, 610, p 151–160

    Article  Google Scholar 

  30. X.Y. Shu, S.Q. Lu, G.F. Li, J.W. Liu, and P. Peng, Nb Solution Influencing on Phase Transformation Temperature of Ni47Ti44Nb9 Alloy, J. Alloys Compd., 2014, 609, p 156–161

    Article  Google Scholar 

  31. P.C. Jiang, Y.F. Zheng, Y.X. Tong, F. Chen, B. Tian, L. Li, D.V. Gunderov, and R.Z. Valiev, Transformation Hysteresis and Shape Memory Effect of an Ultrafine-Grained TiNiNb Shape Memory Alloy, Intermetallics, 2014, 54, p 133–135

    Article  Google Scholar 

  32. S. Jiang and Y. Zhang, Microstructure Evolution and Deformation Behavior of As-Cast NiTi Shape Memory Alloy Under Compression, Trans. Nonferrous Met. Soc. China, 2012, 22(1), p 90–96

    Article  Google Scholar 

  33. H. Shi, S. Pourbabak, J. Van Humbeeck, and D. Schryvers, Electron Microscopy Study of Nb-Rich Nanoprecipitates in Ni-Ti-Nb and Their Influence on the Martensitic Transformation, Scr. Mater., 2012, 67(12), p 939–942

    Article  Google Scholar 

  34. H. Shi, J. Frenzel, G.T. Martinez, S. Van Rompaey, A. Bakulin, S. Kulkova, S. Van Aert, and D. Schryvers, Site Occupation of Nb Atoms in Ternary Ni-Ti-Nb Shape Memory Alloys, Acta Mater., 2014, 74, p 85–95

    Article  Google Scholar 

  35. L.C. Zhao, T.W. Duerig, and S. Justi, The Study of Niobium-Rich Precipitates in a Ni-Ti-Nb Shape Memory Alloy, Scr. Metal. Mater., 1990, 24(2), p 221–226

    Article  Google Scholar 

  36. C.S. Zhang, L.C. Zhao, T.W. Duerig, and C.M. Wayman, Effects of Deformation on the Transformation Hysteresis and Shape Memory Effect in a Ni47Ti44Nb9 Alloy, Scr. Metal. Mater., 1990, 24(9), p 1807–1812

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by National Natural Science Foundation of China (Nos. 51305091, 51305092 and 51475101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuyong Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Liang, Y., Zhang, Y. et al. Influence of Addition of Nb on Phase Transformation, Microstructure and Mechanical Properties of Equiatomic NiTi SMA. J. of Materi Eng and Perform 25, 4341–4351 (2016). https://doi.org/10.1007/s11665-016-2281-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2281-3

Keywords

Navigation