Skip to main content
Log in

Evaluation of the Particle Bonding for Aluminum Sample Produced by Spark Plasma Sintering

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

An Erratum to this article was published on 23 August 2016

Abstract

Spark plasma sintering (SPS) is a powder metallurgy process that sinters powder materials within a short time by simultaneous application of electrical current and pressure. SPS differs from other conventional powder metallurgy processes by its heating mechanism, which is Joule heating of the sample within a graphite die. This study investigates the consolidation of aluminum powder by SPS. Different pressures were used and particle bonding evaluated by means of fracture surface analysis. Electrical resistance, obtained from online monitoring of the variation of voltage and current during the process, showed an enhanced descent at 0.3 T m, and the area under this drop was associated with ductility: the greater the area, the higher the ductility. This temperature corresponds to a significant increase in the hardness ratio of the oxide layer to aluminum, where breakdown of the oxide layer becomes easier, permitting enhanced metallurgical bonding between the powder particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Song, X. Liu, and J. Zhang, Neck Formation and Self-Adjusting Mechanism of Neck Growth of Conducting Powders in Spark Plasma Sintering, J. Am. Ceram. Soc., 2006, 89, p 494–500. doi:10.1111/j.1551-2916.2005.00777.x

    Article  Google Scholar 

  2. Z.A. Munir, D.V. Quach, and M. Ohyanagi, Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process, J. Am. Ceram. Soc., 2011, 94, p 1–19. doi:10.1111/j.1551-2916.2010.04210.x

    Article  Google Scholar 

  3. M. Omori, Sintering, Consolidation, Reaction and Crystal Growth by the Spark Plasma System (SPS), Mater. Sci. Eng., A, 2000, 287, p 183–188. doi:10.1016/S0921-5093(00)00773-5

    Article  Google Scholar 

  4. Z.A. Munir, Analytical Treatment of the Role of Surface Oxide Layers in the Sintering of Metals, J. Mater. Sci., 1979, 14, p 2733–2740. doi:10.1007/BF00610647

    Article  Google Scholar 

  5. G. Xie, O. Ohashi, T. Yoshioka, M. Song, K. Mitsuishi, H. Yasuda, K. Furuya, and T. Noda, Effect of Interface Behavior Between Particles on Properties of Pure Al Powder Compacts by Spark Plasma Sintering, Mater. Trans., 2001, 42, p 1846–1849. doi:10.2320/matertrans.42.1846

    Article  Google Scholar 

  6. T. Nagae, M. Yokota, M. Nose, S. Tomida, T. Kamiya, and S. Saji, Effects of Pulse Current on an Aluminum Powder Oxide Layer During Pulse Current Pressure Sintering, Mater. Trans., 2002, 43, p 1390–1397. doi:10.2320/matertrans.43.1390

    Article  Google Scholar 

  7. G. Xie, O. Ohashi, K. Chiba, N. Yamaguchi, M. Song, K. Furuya, and T. Noda, Frequency Effect on Pulse Electric Current Sintering Process of Pure Aluminum Powder, Mater. Sci. Eng., A, 2003, 359, p 384–390. doi:10.1016/S0921-5093(03)00393-9

    Article  Google Scholar 

  8. G. Xie, O. Ohashi, M. Song, K. Furuya, and T. Noda, Behavior of Oxide Film at the Interface Between Particles in Sintered Al Powders by Pulse Electric-Current Sintering, Metall. Mater. Trans. A, 2003, 34, p 699–703. doi:10.1007/s11661-003-0104-2

    Article  Google Scholar 

  9. M. Zadra, F. Casari, L. Girardini, and A. Molinari, Spark Plasma Sintering of Pure Aluminium Powder: Mechanical Properties and Fracture Analysis, Powder Metall., 2007, 50, p 40–45. doi:10.1179/174329007x186417

    Article  Google Scholar 

  10. H. Kwon, D. Park, Y. Park, J. Silvain, A. Kawasaki, and Y. Park, Spark Plasma Sintering Behavior of Pure Aluminum Depending on Various Sintering Temperatures, Met. Mater. Int., 2010, 16, p 71–75. doi:10.1007/s12540-010-0071-2

    Article  Google Scholar 

  11. G.A. Sweet, M. Brochu, R.L. Hexemer, Jr., I.W. Donaldson, and D.P. Bishop, Microstructure and Mechanical Properties of Air Atomized Aluminum Powder Consolidated via Spark Plasma Sintering, Mater. Sci. Eng., A, 2014, 608, p 273–282. doi:10.1016/j.msea.2014.04.078

    Article  Google Scholar 

  12. N. Chawake, L.D. Pinto, A.K. Srivastav, K. Akkiraju, B.S. Murty, and R.S. Kottada, On Joule Heating During Spark Plasma Sintering of Metal Powders, Scr. Mater., 2014, 93, p 52–55. doi:10.1016/j.scriptamat.2014.09.003

    Article  Google Scholar 

  13. A. Cincotti, A.M. Locci, R. Orrù, and G. Cao, Modeling of SPS Apparatus: Temperature, Current and Strain Distribution with No Powders, AlChE J., 2007, 53, p 703–719. doi:10.1002/aic.11102

    Article  Google Scholar 

  14. D. Giuntini, E. Olevsky, C. Garcia-Cardona, A. Maximenko, M. Yurlova, C. Haines, D. Martin, and D. Kapoor, Localized Overheating Phenomena and Optimization of Spark-Plasma Sintering Tooling Design, Materials, 2013, 6, p 2612–2632. http://www.mdpi.com/1996-1944/6/7/2612

  15. P.D. Desai, H.M. James, and C.Y. Ho, Electrical Resistivity of Aluminum and Manganese, J. Phys. Chem. Ref. Data, 1984, 13, p 1131–1172. doi:10.1063/1.555725

    Article  Google Scholar 

  16. K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, and O. Vanderbiest, Modelling of the Temperature Distribution During Field Assisted Sintering, Acta Mater., 2005, 53, p 4379–4388. doi:10.1016/j.actamat.2005.05.042

    Article  Google Scholar 

  17. X. Wei, D. Giuntini, A.L. Maximenko, C.D. Haines, and E.A. Olevsky, Experimental Investigation of Electric Contact Resistance in Spark Plasma Sintering Tooling Setup, J. Am. Ceram. Soc., 2015, 98, p 3553–3560. doi:10.1111/jace.13621

    Article  Google Scholar 

  18. J.C.Y. Koh and A. Fortini, Prediction of Thermal Conductivity and Electrical Resistivity of Porous Metallic Materials, Int. J. Heat Mass Transfer, 1973, 16, p 2013–2022. doi:10.1016/0017-9310(73)90104-X

    Article  Google Scholar 

  19. J.M. Montes, F.G. Cuevas, and J. Cintas, Porosity Effect on the Electrical Conductivity of Sintered Powder Compacts, Appl. Phys. A, 2008, 92, p 375–380. doi:10.1007/s00339-008-4534-y

    Article  Google Scholar 

  20. N. Fuschillo, B. Lalevic, and B. Leung, Electrical Conduction and Dielectric Breakdown in Crystalline NiO and NiO(Li) Films, J. Appl. Phys., 1975, 46, p 310–316. doi:10.1063/1.321336

    Article  Google Scholar 

  21. J.M. Montes, F.G. Cuevas, and J. Cintas, Electrical Resistivity of Metal Powder Aggregates, Metal. Mater. Trans. B, 2007, 38, p 957–964. doi:10.1007/s11663-007-9097-3

    Article  Google Scholar 

  22. T.B. Holland, U. Anselmi-Tamburini, D.V. Quach, T.B. Tran, and A.K. Mukherjee, Local Field Strengths During Early Stage Field Assisted Sintering (FAST) of Dielectric Materials, J. Eur. Ceram. Soc., 2012, 32, p 3659–3666. doi:10.1016/j.jeurceramsoc.2012.03.012

    Article  Google Scholar 

  23. C.S. Bonifacio, T.B. Holland, and K. van Benthem, Time-Dependent Dielectric Breakdown of Surface Oxides During Electric-Field-Assisted Sintering, Acta Mater., 2014, 63, p 140–149. doi:10.1016/j.actamat.2013.10.018

    Article  Google Scholar 

  24. J. McPherson, J.-Y. Kim, A. Shanware, and H. Mogul, Thermochemical Description of Dielectric Breakdown in High Dielectric Constant Materials, Appl. Phys. Lett., 2003, 82, p 2121–2123. doi:10.1063/1.1565180

    Article  Google Scholar 

  25. E.M. Daver, W.J. Ullrich, and K.B. Patel, Aluminium P/M Parts—Materials, Production and Properties, Key Eng. Mater., 1989, 29–31, p 401–428

    Google Scholar 

  26. R.F. Tylecote, The Solid Phase Welding of Metals, St. Martin’s Press, New York, 1968

    Google Scholar 

  27. S.C. Yoon, S.I. Hong, S.H. Hong, and H.S. Kim, Densification and Conolidation of Powders by Equal Channel Angular Pressing, Mater. Sci. Forum, 2007, 534–536, p 253–256

    Article  Google Scholar 

  28. M. Brochu, T. Zimmerly, L. Ajdelsztajn, E.J. Lavernia, and G. Kim, Dynamic Consolidation of Nanostructured A-7.5%Mg Alloy Powders, Mater. Sci. Eng., A, 2007, 466, p 84–89. doi:10.1016/j.msea.2007.02.028

    Article  Google Scholar 

  29. O. Yanagisawa, K. Matsugi, and T. Hatayama, Effect of Direct Current Pulse Discharge on Electrical Resistivity of Copper and Iron Powder Compacts, Mater. Trans., JIM, 1997, 38, p 240–246. doi:10.2320/matertrans1989.38.240

    Article  Google Scholar 

  30. E. Olevsky, I. Bogachev, and A. Maximenko, Spark-Plasma Sintering Efficiency Control by Inter-Particle Contact Area Growth: A Viewpoint, Scr. Mater., 2013, 69, p 112–116. doi:10.1016/j.scriptamat.2013.02.041

    Article  Google Scholar 

  31. M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical Properties of Nanocrystalline Materials, Prog. Mater Sci., 2006, 51, p 427–556. doi:10.1016/j.pmatsci.2005.08.003

    Article  Google Scholar 

  32. K. Nishimoto, K. Saida, and R. Tsuduki, Effect of Pulsed Electric-Current on Densification Behavior of Bonded Interlayer of Oxide-Dispersion-Strengthened Superalloys Joint, J. Jpn. Inst. Met., 2001, 65, p 747–755

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge AUTO 21 (Grant No. C502-CPM) for their financial support and the Aluminum Research Centre—REGAL. The authors would also like to thank the Council of Higher Education of Turkey and Marmara University for scholarships to Mr. Tünçay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Brochu.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11665-016-2300-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tünçay, M.M., Nguyen, L., Hendrickx, P. et al. Evaluation of the Particle Bonding for Aluminum Sample Produced by Spark Plasma Sintering. J. of Materi Eng and Perform 25, 4521–4528 (2016). https://doi.org/10.1007/s11665-016-2275-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2275-1

Keywords

Navigation