Skip to main content
Log in

Microstructure Evolution in a Cu-0.5Cr-0.2Zr Alloy Subjected to Equal Channel Angular Pressing, Rolling or Aging

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The evolution of microstructure in the Cu-0.5%Cr-0.2%Zr alloy subjected to thermomechanical treatment has been studied by means of the x-ray analysis. The workpieces have been subjected to 1, 2, 4 and 8 passes of equal channel angular pressing, plain cold rolling and aging treatment. The results of the XRD investigations reflect the evolution of the lattice parameter, the size of coherently scattering domains, the elastic microdistortions and the dislocation density in Cu matrix. The observed changes in the microstructure are explained by the competition between the developing defects and precipitation of the Cr phase particles from the Cu matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Progr. Mater. Sci., 2000, 45, p 103–189

    Article  Google Scholar 

  2. R.Z. Valiev and I.V. Alexandrov, Bulk Nanostructured Metal Materials: Preparation, Structure and Properties, Akademkniga, Moscow, 2007

    Google Scholar 

  3. W. Wei, K.X. Wei, F. Wang, Q.B. Du, I.V. Alexandrov, and J. Hu, Microstructure, Mechanical Properties and Electrical Conductivity of Industrial Cu-0.5 %Cr Alloy Processed by Severe Plastic Deformation, Mater. Sci. Eng., 2011, A528, p 1478–1484

    Article  Google Scholar 

  4. W. Wei, K.X. Wei, Q.B. Du, F.F. Musin, J. Hu, I.V. Alexandrov, Strength and Electrical Conductivity of Bulk Nanostructured Cu and Cu-based Alloys from SPD, Handbook of Mechanical Nanostructuring, M. Aliofkhazraei, Ed., Wiley-VCH Verlag GmbH and Co., Weinheim, Chapter 6, 2015

  5. R.K. Islamgaliev, K.M. Nesterov, Y. Champion, and R.Z. Valiev, Enhanced Strength and Electrical Conductivity in Ultrafine-Grained Cu-Cr Alloy Processed by Severe Plastic Deformation, JOP Conf. Ser. Mater. Sci. Eng., 2014, 63, p 012118

    Article  Google Scholar 

  6. R.K. Islamgaliev, V.D. Sitdikov, K.M. Nesterov, and D.L. Pankratov, Structure and Crystallographic Texture in the Cu-Cr-Ag Alloy Subjected to Severe Plastic Deformation, Rev. Adv. Mater. Sci., 2014, 39, p 14–34

    Google Scholar 

  7. A. Vinogradov, Y. Suzuki, T. Ishida, K. Kitagawa, and V.I. Kopylov, Effect of Chemical Composition on Structure and Properties of Ultrafine Grained Cu-Cr-Zr Alloys Produced by Equal-Channel Angular Pressing, Mater. Trans., 2004, 45, p 2187–2191

    Article  Google Scholar 

  8. C.Z. Xu, Q.J. Wang, M.S. Zheng, J.W. Zhu, J.D. Li, M.Q. Huang, Q.M. Jia, and Z.Z. Du, Microstructure and Properties of Ultra-Fine Grain Cu-Cr Alloy Prepared by Equal-Channel Angular Pressing, Mater. Sci. Eng., A, 2007, 459, p 303–308

    Article  Google Scholar 

  9. M. Lipińska, P. Bazarnik, and M. Lewandowska, The Electrical Conductivity of CuCrZr Alloy After SPD Processing, IOP Conf. Series: Mater. Sci. Eng., 2014, 63, p 012119

    Article  Google Scholar 

  10. E.A. Sarkeeva, M.M. Abramova, R.A. Oreshkina, V.D. Sitdikov, K.X. Wei, W. Wei, F.F. Musin, and I.V. Alexandrov, Elevated Tribological Characteristics of Ultrafine Grained Conductive Cu-0.5Cr-0.2Zr Alloy, Mater. Phys. Mech., 2015, 24, p 211–217

    Google Scholar 

  11. J. Gubicza, N.H. Nam, L. Balogh, R.J. Hellmig, V.V. Stolyarov, Y. Estrin, and T. Ungár, Microstructure of Severely Deformed Metals Determined by X-ray Peak Profile Analysis, J. Alloys Comp., 2004, 378, p 248–252

    Article  Google Scholar 

  12. Z. Matej, R. Kuzel, M. Dopita, M. Janecek, J. Cizek, and T. Brunatova, XRD Profile Analysis of ECAP Cu and Cu-Zr Samples, Int. J. Mater. Res., 2009, 100, p 880–883

    Article  Google Scholar 

  13. Advanced Integrated X-ray Powder Diffraction Suite. Rigaku J., 2010, 26(1)

  14. N.C. Halder and C.N.J. Wagner, Separation of Particle Size and Lattice Strain in Integral Breadth Measurements, Acta Cryst., 1966, 20, p 312–313

    Article  Google Scholar 

  15. G.K. Williamson and R.E. Smallman, Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the X-ray Debye-Scherrer Spectrum, Phil. Mag., 1956, 1, p 34–45

    Article  Google Scholar 

  16. H.E. Swanson and E. Tatge, Standard X-ray Diffraction Powder Patterns, C 539, Nat. Bur. Stand., 1953, 1, p 15

  17. G. Joseph and K.J.A. Kundig, Copper: Its Trade, Manufacture, Use, and Environmental Status, ASM International, Kinsman Road Materials Park, 1998

    Google Scholar 

  18. T.P. Harzer, S. Djaziri, R. Raghavan, and G. Dehm, Nanostructure and Mechanical Behavior of Metastable Cu-Cr Thin Films Grown by Molecular Beam Epitaxy, Acta Mater., 2015, 83, p 318–332

    Article  Google Scholar 

  19. M.J. Tenwick and H.A. Davies, Enhanced Strength in High Conductivity Cu Alloys, Mater. Sci. Eng., 1988, 98, p 543–546

    Article  Google Scholar 

  20. K.Y. Shi, T. Shen, L.H. Xue, C.H. Chen, and Y.W. Yan, Thermodynamic Analysis of the Extension of Solid Solubility of the Cu-Cr System Processed by Mechanical Alloying, Adv. Mater. Res., 2011, 311–313, p 392–395

    Article  Google Scholar 

  21. C. Xia, W. Zhang, Z. Kang, Y. Jia, Y. Wu, R. Zhang, G. Xua, and M. Wang, High Strength and High Electrical Conductivity Cu–Cr System Alloys Manufactured by Hot Rolling–Quenching Process and Thermomechanical Treatments, Mater. Sci. Eng., A, 2012, 538, p 295–301

    Article  Google Scholar 

  22. D.V. Shangina, S.V. Dobatkin, and N.R. Bochvar, Improvement of Strength and Conductivity in Cu-Alloys with the Application of High Pressure Torsion and Subsequent Heat-Treatments, J. Mater. Sci., 2014, 49, p 6674–6681

    Article  Google Scholar 

  23. S.V. Dobatkin, J. Gubicza, D.V. Shangina, N.R. Bochvar, and N.Y. Tabachkova, High Strength and Good Electrical Conductivity in Cu–Cr Alloys Processed by Severe Plastic Deformation, Mater. Lett., 2015, 153, p 5–9

    Article  Google Scholar 

  24. A. Dubravina, M.J. Zehetbauer, E. Schafler, and I.V. Alexandrov, Correlation Between Domain Size Obtained by X-ray Bragg Profile Analysis and Macroscopic Flow Stress in Severely Deformed Cu, Mater. Sci. Eng., 2004, A387–389, p 817–821

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful for the support of experimental works to the National Science Foundation of Jiangsu Province, P.R. China under Grant BK2012594 and BK20131144, the Science Project of Changzhou, P.R. China under Grant No. CZ20130021, the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No. (Ref 2014)9, the Ministry of Education and Science of the Russian Federation within the Framework of the Design Part of the State Task No. 11.2540.2014/K Educational Organization of Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Igor V. Alexandrov or Wei Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, I.V., Sitdikov, V.D., Abramova, M.M. et al. Microstructure Evolution in a Cu-0.5Cr-0.2Zr Alloy Subjected to Equal Channel Angular Pressing, Rolling or Aging. J. of Materi Eng and Perform 25, 4303–4309 (2016). https://doi.org/10.1007/s11665-016-2267-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2267-1

Keywords

Navigation