Journal of Materials Engineering and Performance

, Volume 25, Issue 9, pp 3573–3579 | Cite as

Surface Roughness Investigation of Ultrafine-Grained Aluminum Alloy Subjected to High-Speed Erosion

  • N. A. Kazarinov
  • A. D. Evstifeev
  • Y. V. Petrov
  • S. A. Atroshenko
  • V. A. Lashkov
  • R. Z. Valiev
  • A. S. Bondarenko
Article

Abstract

This study is the first attempt to investigate the influence of severe plastic deformation (SPD) treatment on material surface behavior under intensive erosive conditions. Samples of aluminum alloy 1235 (99.3 Al) before and after high-pressure torsion (HPT) were subjected to intensive erosion by corundum particles accelerated via air flow in a small-scale wind tunnel. Velocity of particles varied from 40 to 200 m/s, while particle average diameter was around 100 μm. Surface roughness measurements provided possibility to compare surface properties of both materials after erosion tests. Moreover, SPD processing appeared to increase noticeably the threshold velocity of the surface damaging process. Additionally, structural analysis of the fracture surfaces of the tested samples was carried out.

Keywords

erosion fracture analysis HPT surface roughness ultrafine-grained materials 

References

  1. 1.
    YuV Petrov and V.I. Smirnov, Interrelation between the Threshold Characteristics of Erosion and Spall Fracture, Tech. Phys., 2010, 55(2), p 230–235CrossRefGoogle Scholar
  2. 2.
    K. Ravi-Chandar, Dynamic Fracture, Elsevier, Amsterdam, 2004 (Chap. 10)Google Scholar
  3. 3.
    A.N. Berezkin, S.I. Krivosheev, YuV Petrov, and A.A. Utkin, Effect of Delayed Crack Nucleation Under Threshold Pulse Loading, Dokl. Phys., 2000, 45(11), p 617–619CrossRefGoogle Scholar
  4. 4.
    V.A. Bratov, A.A. Gruzdkov, S.I. Krivosheev, and YuV Petrov, Energy Balance in the Crack Growth Initiation Under Pulsed-Load Conditions, Dokl. Phys., 2004, 49(5), p 338–341CrossRefGoogle Scholar
  5. 5.
    R. Valiev, Nanostructuring of Metals by Severe Plastic Deformation for Advanced Properties, Nat. Mater., 2004, 3, p 511–515CrossRefGoogle Scholar
  6. 6.
    Q. Wei, H.T. Zhang, B.E. Schuster, K.T. Ramesh, R.Z. Valiev, L.J. Kecskes, R.J. Dowding, L. Magness, and K. Cho, Microstructure and Mechanical Properties of Super-Strong Nanocrystalline Tungsten Processed by High-Pressure Torsion, Acta Mater., 2006, 54(15), p 4079–4089CrossRefGoogle Scholar
  7. 7.
    A. Mishra, M. Martin, N.N. Thadhani, B.K. Kad, E.A. Kenik, and M.A. Meyers, High-Strain-Rate Response of Ultra-Fine-Grained Copper, Acta Mater., 2008, 56(12), p 2770–2783CrossRefGoogle Scholar
  8. 8.
    A.B. Witney, P.G. Sanders, J.R. Weertman, and J.A. Eastman, Fatigue of Nanocrystalline Copper, Scr. Metall. Mater., 1995, 33(12), p 2025–2030CrossRefGoogle Scholar
  9. 9.
    C.T. Wang, N. Gao, M.G. Gee, R.J.K. Wood, and T.G. Langdon, Tribology Testing of Ultrafine-Grained Ti Processed by High-Pressure Torsion with Subsequent Coating, J. Mater. Sci., 2013, 48(13), p 4742–4748CrossRefGoogle Scholar
  10. 10.
    M.Y. Murashkin, I. Sabirov, V.U. Kazykhanov, E.V. Bobruk, A.A. Dubravina, and R.Z. Valiev, Enhanced Mechanical Properties and Electrical Conductivity in Ultrafine-Grained Al Alloy Processed Via ECAP-PC, J. Mater. Sci., 2013, 48(13), p 4501–4509CrossRefGoogle Scholar
  11. 11.
    R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51(7), p 881–981CrossRefGoogle Scholar
  12. 12.
    T. Hebesberger, H.P. Stüwe, and A. Vorhauer, Structure of Cu Deformed by High Pressure Torsion, Acta Mater., 2005, 53, p 393–402CrossRefGoogle Scholar
  13. 13.
    A. Belyakov, T. Sakai, H. Miura, and K. Tsuzaki, Grain Refinement in Copper Under Large Strain Deformation, Philos. Mag. A, 2001, 81(11), p 2629–2643CrossRefGoogle Scholar
  14. 14.
    Y. Saito, H. Utsunomiya, N. Tsutji, and T. Sakaim, Novel Ultra-High Straining Process for Bulk Materials Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater., 1999, 47(2), p 579–583CrossRefGoogle Scholar
  15. 15.
    N. Kamkar, F. Brindier, P. Brocher, and P. Jedrzejowski, Water Droplet Erosion Mechanisms in Rolled Ti–6Al–4V, Wear, 2013, 301(1), p 442–448CrossRefGoogle Scholar
  16. 16.
    N. Kamkar, F. Brindier, P. Jedrzejowski, and P. Brocher, Water Droplet Impact Erosion Damage Initiation in Forged Ti–6Al–4V, Wear, 2015, 322, p 192–202CrossRefGoogle Scholar
  17. 17.
    J.E. Goodwin, W. Sage, and G.P. Tilly, Study of Erosion by Solid Particles, Proc. Inst. Mech. Eng., 1969, 184(1), p 279–292CrossRefGoogle Scholar
  18. 18.
    G.P. Tilly and W. Sage, The Interaction of Particle and Material Behaviour in Erosion Processes, Wear, 1970, 16(6), p 447–465CrossRefGoogle Scholar
  19. 19.
    V.A. Lashkov, Experimental Determination of the Coefficients of Restitution of Particles in the Flow of a Gas Suspension in a Collision Against the Surface, J. Eng. Phys., 1991, 60(2), p 154–159CrossRefGoogle Scholar
  20. 20.
    G. Grant and W. Tabakoff, Erosion Prediction in Turbomachinery Resulting from Environmental Solid Particles, J. Aircr., 1975, 12(5), p 471–478CrossRefGoogle Scholar
  21. 21.
    V.I. Smirnov, On the Effect of the Geometric Shape of Abrasive Particles on the Threshold Rate of Erosion, Strength Mater., 2007, 39(1), p 46–52CrossRefGoogle Scholar
  22. 22.
    S.A. Atroshenko and V.I. Smirnov, Behavior of Pipe Bainitic Steel Under Dynamic Loading, Mar. Intellect. Technol., 2010, 2, p 32–34Google Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • N. A. Kazarinov
    • 1
    • 2
  • A. D. Evstifeev
    • 1
  • Y. V. Petrov
    • 1
  • S. A. Atroshenko
    • 1
  • V. A. Lashkov
    • 1
  • R. Z. Valiev
    • 1
  • A. S. Bondarenko
    • 1
  1. 1.Saint Petersburg State UniversitySaint PetersburgRussia
  2. 2.Lavrentyev Institute of Hydrodynamics, Siberian Branch of the RASNovosibirskRussia

Personalised recommendations