Skip to main content
Log in

Effects of Ti and B Addition on Microstructures and Mechanical Properties of Hot-Rolled High-Strength Nb-Containing Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Four microalloyed samples were designed to study the effects of Ti and B additions on microstructures and mechanical properties. Experimental results show that the samples without B addition mainly contain well-developed pearlite and polygonal ferrite, whereas the B-containing samples consist of degenerated pearlite, polygonal ferrite, and Widmanstätten ferrite (WF). The B addition promotes the precipitation of the complex (Ti,Al,Nb)N and (Ti,Al,Nb)2CS phases during the hot-rolling process. Grain sizes are significantly refined by the combinations of undissolved (Ti,Al)N, (Ti,Al,Nb)N complex, (Ti,Al,Nb)2CS, and fine inclusions, which act as the nucleation sites of intragranular ferrite. The core of complex (Ti,Al,Nb)N precipitate is undissolved Ti-N-rich (Ti,Al)N phase, and the cap is Nb-N-rich (Nb,Ti)N phase. The property measurements show that the B addition enhances comprehensive properties of tensile strength and elongation, but decreases fracture toughness due to higher contents of the WF and subgrains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.Y. Shin, K. Oh, S. Lee, and N.J. Kim, Correlation Study of Microstructure, Hardness, and Charpy Impact Properties in Heat Affected Zones of Three API, X80 Linepipe Steels Containing Complex Oxides, Met. Mater. Int., 2011, 17, p 29–40

    Article  Google Scholar 

  2. R. Mendoza, J. Huante, M. Alanis, C. Gonzale-Rivera, and J.A. Juare-Islas, Processing of Ultra Low Carbon Steels with Mechanical Properties Adequate for Automotive Applications in the as-Annealed Condition, Mater. Sci. Eng., A, 2000, 276, p 203–209

    Article  Google Scholar 

  3. J. Guo, C. Shang, S. Yang, H. Guo, X. Wang, and X. He, Weather Resistance of Low Carbon High Performance Bridge Steel, Mater. Des., 2009, 30, p 129–134

    Article  Google Scholar 

  4. A. Avci, N. Lruya, M. Simsir, and A. Akdemir, Mechanical and Microstructural Properties of Low-Carbon Steel-Plate-Reinforced Gray Cast Iron, J. Mater. Process. Technol., 2009, 209, p 1410–1416

    Article  Google Scholar 

  5. P.C.M. Rodrigues, E.V. Pereloma, and D.B. Santos, Mechanical Properties of a HSLA Bainitic Steel Subjected to Controlled Rolling with Accelerated Cooling, Mater. Sci. Eng., A, 2000, 283, p 136–143

    Article  Google Scholar 

  6. R.D.K. Misra, H. Nathani, J.E. Hartmann, and F. Siciliano, Microstructural Evolution in a New 770 MPa Hot Rolled Nb-Ti Microalloyed Steel, Mater. Sci. Eng., A, 2005, 394, p 339–352

    Article  Google Scholar 

  7. H. Najafi, J. Rassizadehghani, and S. Norouzi, Mechanical Properties of As-Cast Microalloyed Steels Produced Investment Casting, Mater. Des., 2011, 32, p 656–663

    Article  Google Scholar 

  8. S.R. Kulkarni, V.R. Selva, N.A. Phatak, S.K. Sexena, C.S. Zha, and T.E.I. Raghy, Study of Ti2SC Under Compression up to 47GPa, J. Alloys. Compd., 2008, 448, p L1–L4

    Article  Google Scholar 

  9. G.K. Tirumalasetty, C.M. Fang, Q. Xu, J. Jansen, J. Sietsma, M.A. van Huis, and H.W. Zandbergen, Novel Ultrafine Fe(C) Precipitates Strengthen Transformation -Induced-Plasticity Steel, Acta Mater., 2012, 60, p 7160–7168

    Article  Google Scholar 

  10. J.H. Shim, Y.W. Cho, S.H. Chung, J.D. Shim, and D.N. Lee, Nucleation of Intragranular Ferrite at Ti2O3 Particle in Low Carbon Steel, Acta Mater., 1999, 47, p 2751–2760

    Article  Google Scholar 

  11. J.M. Gregg and H.K.D.H. Bhadeshia, Solid-State Nucleation of Acicular Ferrite on Minerals Added to Molten Steel, Acta Mater., 1997, 45, p 739–748

    Article  Google Scholar 

  12. K.E. Thelning, Steel and its Heat Treatment, Butterworths, New York, 1984, p 409–419

    Google Scholar 

  13. W.C. Leslic, The Physical Metallurgy of steels, McGraw-Hill International Book Company, New York, 1981, p 269–281

    Google Scholar 

  14. W. Stumpf and K. Banks, The Hot Working Characteristics of a Boron Bearing and a Conventional Low Carbon Steel, Mater. Sci. Eng. A, 2006, 418, p 86–94

    Article  Google Scholar 

  15. B.M. Kapada, Hardenability Concepts with Application to Steel AIME, Warrendale, USA, 1978, p 448

    Google Scholar 

  16. J.E. Morral and J.B.B. Cameron, Hardenability Mechanisms, in B in Steel, Metall. Soc. AIME, 1980, 28, p 955

    Google Scholar 

  17. E. López-Chipres, I. Mejía, C. Maldonado, A. Bedoola-Jacuinde, and J.M. Cabrera, How Ductility Behavior of Boron Microalloyed Steels, Mater. Sci. Eng., A, 2007, 460–461, p 464–470

    Article  Google Scholar 

  18. D.A. Mortimer and M.G. Nicholas, Surface and Grain-Boundary Energies of AISI, 316 Stainless Steel in the Presence of Boron, Met. Sci., 1976, 10, p 326–332

    Article  Google Scholar 

  19. J.E. Morral and J.B. Cameron, Model For Ferrite Nucleation Application to Boron Hardenability, Met. Trans. A., 1977, 8, p 1817–1819

    Article  Google Scholar 

  20. W.D. Wang, S.H. Zhang, and X.L. He, Diffusion of Boron in Alloys, Acta Metall., 1995, 43, p 1693–1699

    Article  Google Scholar 

  21. B. Hwang, D.W. Suh, and S.J. Kim, Austenitizing Temperature and Hardenability of Low-Carbon Steels, Scripta Mater., 2011, 64, p 1118–1120

    Article  Google Scholar 

  22. L. Karlsson and H. Norden, Overview no. 63 Non-Equilibrium Grain Boundary Segregation of Boron in Austenitic Stainless Steel-II. Fine Scale Segregation Behavior, Acta Mater., 1988, 36, p 35–46

    Article  Google Scholar 

  23. G. Xu, X. Gan, G. Ma, F. Luo, and H. Zou, The Development of Ti-Alloyed High Strength Microalloy Steel, Mater. Des., 2010, 31, p 2891–2896

    Article  Google Scholar 

  24. H.L. Yi, L.X. Du, G.D. Wang, and X.H. Liu, Development of a As-Hot-Rolled Low Carbon Steel with High Yield Strength, ISIJ Int., 2006, 46, p 754–758

    Article  Google Scholar 

  25. J. Hu, L.X. Du, J.J. Wang, and Q.Y. Sun, Cooling Process and Mechanical Properties Design of As-Hot-Rolled Low Carbon High Strength Microalloyed Steel for Automotive Wheel Usage, Mater. Des., 2014, 53, p 332–337

    Article  Google Scholar 

  26. Y. Han, J. Shi, L. Xu, W.Q. Cao, and H. Dong, Effects of Ti Addition and Reheating Quenching on Grain Refinement and Mechanical Properties in Low Carbon Medium Manganese Martensitic Steel, Mater. Des., 2012, 34, p 427–434

    Article  Google Scholar 

  27. A. Deva, B.K. Jha, and N.S. Mishra, Influence of Boron on Strain Hardening Behavior and Ductility of Low Carbon Hot Rolled Steel, Mater. Sci. Eng., A, 2011, 528, p 7375–7380

    Article  Google Scholar 

  28. J.R. Yang and L.C. Chang, The Effect of Stress on the Widmanstätten Ferrite Transformation, Mater. Sci. Eng., A, 1997, 223, p 158–167

    Article  Google Scholar 

  29. J.W. Zhao, J.H. Lee, Y.W. Kim, Z.Y. Jiang, and C.S. Lee, Enhancing Mechanical Properties of a Low-Carbon Microalloyed Cast Steel by Controlled Heat Treatment, Mater. Sci. Eng., A, 2013, 559, p 427–435

    Article  Google Scholar 

  30. G. Krauss, Steel: Processing, Structure, and Performance, Ohio, ASM International, 2005, p 109–111

    Google Scholar 

  31. H.R. Shercliff and M.F. Ashby, A Process Model for Age Hardening of Aluminium Alloys—II. Applications of the Model, Acta Mater., 1990, 38, p 1803–1812

    Article  Google Scholar 

  32. R. Soto, W. Saikaly, X. Bano, C. Issartel, G. Rigaut, and A. Chara, Statistical and Theoretical Analysis of Precipitates in Dual-Phase Steels Microalloyed with Titanium and their Effect on Mechanical Properties, Acta Mater., 1990, 47, p 3475–3481

    Article  Google Scholar 

  33. G.L. Dunlop, C.J. Carlsson, and G. Frimodig, Precipitation of VC in Ferrite and Pearlite During Direct Transformation of a Medium Carbon Microalloyed Steel, Met. Trans. A., 1978, 9, p 261–266

    Article  Google Scholar 

  34. W. Saikaly, X. Bano, C. Issartel, G. Rigaut, L. Charria, and A. Chara, The Effects of Thermomechanical Processing on the Precipitation in an Industrial Dual-Phase Steel Microalloyed with Titanium, Met. Mater. Trans. A., 2001, 32, p 1939–1948

    Article  Google Scholar 

  35. J. Hu, L.X. Du, and J.J. Wang, Effect of V on Intragranular Ferrite Nucleation of High Ti Bearing Steel, Scr. Mater., 2013, 68, p 953–956

    Article  Google Scholar 

  36. R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov, Structure and Properties of Ultrafine-Grained Materials Produced by Severe Plastic Deformation, Mater. Sci. Eng., A, 1993, 168, p 141–148

    Article  Google Scholar 

  37. Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon, Microstructural Characteristics of Ultrafine-Grained Aluminum Produced Using Equal-Channel Angular Pressing, Metall. Mater. Trans. A, 1998, 29, p 2245–2252

    Article  Google Scholar 

  38. P.B. Berbon, N.K. Tsenev, R.Z. Valiev, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon, Fabrication of Bulk Ultrafine-Grained Materials Through Intense Plastic Straining, Metall. Mater. Trans. A, 1998, 29, p 2237–2243

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the key research project of Anhui Education Adminstration office (KJ2015A039) and the Science Foundation of Anhui Province (1608085QE102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanglin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Li, C. & Chen, W. Effects of Ti and B Addition on Microstructures and Mechanical Properties of Hot-Rolled High-Strength Nb-Containing Steels. J. of Materi Eng and Perform 25, 3472–3481 (2016). https://doi.org/10.1007/s11665-016-2181-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2181-6

Keywords

Navigation