Skip to main content
Log in

Continuous Modeling of Calcium Transport Through Biological Membranes

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig. 3

Similar content being viewed by others

References

  1. J. Bobacka, A. Ivaska, and A. Lewenstam, Potentiometric Ion Sensors, Chem. Rev., 2008, 108(2), p 329–351

    Article  Google Scholar 

  2. K. Krabbenhøft and J. Krabbenhøft, Application of the Poisson–Nernst–Planck Equations to the Migration Test, Cem. Concr. Res., 2008, 38, p 77–88

    Article  Google Scholar 

  3. B. Roux, The Membrane Potential and Its Representation by a Constant Electric Field in Computer Simulations, Biophys. J., 2008, 95, p 4205–4216

    Article  Google Scholar 

  4. C. Kutzner, H. Grubmuller, B.L. de Groot, and U. Zachariae, Computational Electrophysiology: The Molecular Dynamics of Ion Channel Permeation and Selectivity in Atomistic Detail, Biophys. J., 2011, 101, p 809–817

    Article  Google Scholar 

  5. M. Jensen, W. Borhani, K. Lindorff-Larsen, P. Maragakis, V. Jogini, M.P. Eastwood, R.O. Dror, and D.E. Shaw, Principles of Conduction and Hydrophobic Gating in K+ Channels, Proc. Natl. Acad. Sci. USA, 2010, 107, p 5833–5838

    Article  Google Scholar 

  6. A. Bidon-Chanal, E.-M. Krammer, D. Blot, E. Pebay-Peyroula, C. Chipot, S. Ravaud, and F. Dehez, How do Membrane Transporters Sense pH? The Case of the Mitochondrial ADP-ATP Carrier, J. Phys. Chem. Lett., 2013, 4, p 3787–3791

    Article  Google Scholar 

  7. B. Roux, T. Allen, S. Berneche, and W. Im, Theoretical and Computational Models of Biological Ion Channels, Q. Rev. Biophys., 2004, 37(1), p 15–103

    Article  Google Scholar 

  8. E.-M. Krammer, F. Homblé, and M. Prévost, Molecular origin of VDAC Selectivity Towards Inorganic Ions: A Combined Molecular and Brownian Dynamics Study, Biochem. Biophys. Acta, 2013, 1828, p 1284–1292

    Article  Google Scholar 

  9. B. Corry, S. Kuyucak, and S.-H. Ghung, Dielectric Self-Energy in Poisson-Boltzmann and Poisson-Nernst-Planck Models of Ion Channels, Biophys. J., 2003, 84, p 3594–3606

    Article  Google Scholar 

  10. R.S. Eisenberg, From Structure to Function in Open Ionic Channels, J. Membr. Biol., 1999, 171(1), p 1–24

    Article  Google Scholar 

  11. I. Valent, P. Petrovič, P. Neogrády, I. Schreiber, and M. Marek, Electrodiffusion Kinetics of Ionic Transport in a Simple Membrane Channel, J. Phys. Chem. B, 2013, 117, p 14283–14293

    Article  Google Scholar 

  12. B. Bożek, A. Lewenstam, K. Tkacz-Śmiech, and M. Danielewski, Electrochemistry of Symmetrical Ion Channel: Three-Dimensional Nernst-Planck-Poisson Model, ECS Trans., 2014, 61(15), p 11–20

    Article  Google Scholar 

  13. R. Hansford, Relation Between Mitochondrial Calcium Transport and Control of Energy Metabolism, Rev. Physiol. Biochem. Pharmacol., 1985, 102, p 2–72

    Google Scholar 

  14. E. Carafoli, Intracellular Calcium Homeostasis, Ann. Rev. Biochem., 1987, 56, p 395–435

    Article  Google Scholar 

  15. M. Crompton, Role of Mitochondria in Intracellular Calcium Regulation, Intracellular Calcium Regulation, F. Bronner, Ed, Alan R. Liss, New York, 1990, p 181–209.

  16. J.G. McCormack, A.P. Halestrap, and R.M. Denton, Role of Calcium Ions in Regulation of Mammalian Intramitochondrial Metabolism, Physiol. Rev., 1990, 70(2), p 391–420

    Google Scholar 

  17. M.R. Duchen, MRCa(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons, Biochem J., 1992, 283 (Part 1), p 41-50.

  18. S.S. Kannurpatti, B.G. Sanganahalli, P. Herman, and F. Hyder, Role of Mitochondrial Calcium Uptake Homeostasis in Resting State fMRI, Brain Networks, NMR Biomed., 2015, 28(11), p 1579–1588

    Article  Google Scholar 

  19. K. Dołowy, Warsaw University of Life Sciences - private communication 2010-2013.

  20. H. Chang and G. Jaffé, Polarization in Electrolyte Solutions. Part I: Theory, J. Chem. Phys., 1952, 20, p 1071–1077

    Article  Google Scholar 

  21. W.E. Morf, The Principles of Ion-Selective Electrodes and of Membrane Transport, 1st ed., Akadémiai Kiadó, Budapest, 1981, p 123

    Google Scholar 

  22. W.E. Schiesser, The Numerical Method of Lines: Integration of Partial Differential Equations, Math. Comput., 1993, 60(201), p 433–437

    Article  Google Scholar 

  23. A.C. Hindmarsh, LSODE and LSODI, Two Initial Value Ordinary Differential Equation Solvers, ACM Signum Newslett., 1980, 15, p 10–11

    Article  Google Scholar 

  24. W.E. Morf, E. Pretsch, and N.F. De Rooij, Theoretical Treatment and Numerical Simulation of Potential and Concentration Profiles in Extremely Thin Non-Electroneutral Membranes Used for Ion-Selective Electrodes, J. Electroanal. Chem., 2010, 641(1), p 45–56

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financed by the AGH Grant No. 11.11.160.768. The authors would like to thank Professor Krzysztof Dołowy for inspiring this work and his valuable comments pertaining the simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Filipek.

Additional information

This article is an invited submission to JMEP selected from presentations at the Symposium “Interface Design and Modelling,” belonging to the Topic “Joining and Interfaces” at the European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2015), held on September 20-24, 2015, in Warsaw, Poland, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasielec, J.J., Filipek, R., Szyszkiewicz, K. et al. Continuous Modeling of Calcium Transport Through Biological Membranes. J. of Materi Eng and Perform 25, 3285–3290 (2016). https://doi.org/10.1007/s11665-016-2160-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2160-y

Keywords

Navigation