Skip to main content
Log in

Microstructure Evolution and Hardness of an Ultra-High Strength Cu-Ni-Si Alloy During Thermo-mechanical Processing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microstructure evolution and hardness changes of an ultra-high strength Cu-Ni-Si alloy during thermo-mechanical processing have been investigated. For hot-compressive deformation specimens, dynamic recrystallization preferentially appeared on deformation bands. As deformation temperature increased from 750 to 900 °C, elongated grains with the Cubic texture {001} 〈100〉 were substituted by recrystallized grains with Copper texture {112} 〈111〉. For the samples having undergone cold rolling followed by annealing, static recrystallization preferentially occurred in the deformation bands, and then complete recrystallization occurred. Goss, Cubic, and Brass textures remained after annealing at 600 and 700 °C for 1 h; R texture {111} 〈211〉 and recrystallization texture {001} 〈100〉 were formed in samples annealed at 800 and 900 °C for 1 h, respectively. For samples processed under multi-directional forging at cryogenic temperature, the hardness was increased as a result of work hardening and grain refinement strengthening. These were attributed to the formation of equiaxed sub-grain structures and a high dislocation density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Q.Y. Dong, L.N. Shen, F. Cao, Y.L. Jia, K.J. Liao, and M.P. Wang, Effect of Thermomechanical Processing on the Microstructure and Properties of a Cu-Fe-P Alloy, J. Mater. Eng. Perform., 2015, 24(4), p 1531–1539

    Article  Google Scholar 

  2. H.C. Chen, G. Bi, M.L.S. Nai, and J. Wei, Enhanced Welding Efficiency in Laser Welding of Highly Reflective Pure Copper, J. Mater. Process. Technol., 2015, 216, p 287–293

    Article  Google Scholar 

  3. A.Y. Khereddine, F.H. Larbi, M. Kawasaki, T. Baudin, D. Bradai, and T.G. Langdon, An Examination of Microstructural Evolution in a Cu-Ni-Si Alloy Processed by HPT and ECAP, Mater. Sci. Eng. A, 2013, 576, p 149–155

    Article  Google Scholar 

  4. I. Shakhova, Z. Yanushkevich, I. Fedorova, A. Belyakov, and R. Kaibyshev, Grain Refinement in a Cu-Cr-Zr Alloy During Multidirectional Forging, Mater. Sci. Eng. A, 2014, 606, p 380–389

    Article  Google Scholar 

  5. H. Tsubakino, R. Nozato, and A. Yamamoto, Precipitation Sequence for Simultaneous Continuous and Discontinuous Modes in Cu-Be Binary Alloys, Mater. Sci. Technol., 1993, 9(4), p 288–294

    Article  Google Scholar 

  6. B. Djurić, M. Jovanović, and D.J. Drobnjak, A Study of Precipitation in Cu-Be Alloys, Metallography, 1980, 13, p 235–247

    Article  Google Scholar 

  7. W.S. Jeon, C.C. Shur, J.G. Kim, S.Z. Han, and Y.S. Kim, Effect of Cr on the Corrosion Resistance of Cu-6Ni-4Sn Alloys, J. Alloys Compd., 2008, 455, p 358–363

    Article  Google Scholar 

  8. F.L. Wang, Y.P. Li, K. Wakoh, Y. Koizumi, and A. Chiba, Cu-Ti-C Alloy with High Strength and High Electrical Conductivity Prepared by Two-Step Ball-Milling Processes, Mater. Des., 2014, 61, p 70–74

    Article  Google Scholar 

  9. L.N. Shen, Z. Li, Z.M. Zhang, Q.Y. Dong, Z. Xiao, Q. Lei, and W.T. Qiu, Effects of Silicon and Thermo-mechanical Process on Microstructure and Properties of Cu-10Ni-3Al-0.8Si Alloy, Mater. Des., 2014, 62, p 265–270

    Article  Google Scholar 

  10. W.H. Sun, H.H. Xu, S.H. Liu, Y. Du, Z.H. Yuan, and B.Y. Huang, Phase Equilibria of the Cu-Ni-Si System at 700 °C, J. Alloys Compd., 2011, 509(41), p 9776–9781

    Article  Google Scholar 

  11. S.A. Lockyer and F.W. Noble, Precipitate Structure in a Cu-Ni-Si Alloy, J. Mater. Sci., 1994, 29(1), p 218–226

    Article  Google Scholar 

  12. Q. Lei, Z. Li, J. Wang, J.M. Xie, X. Chen, S. Li, Y. Gao, and L. Li, Hot Working Behavior of a Super High Strength Cu-Ni-Si Alloy, Mater. Des., 2013, 51, p 1104–1109

    Article  Google Scholar 

  13. X.J. Liu, S.L. Xiang, S.Y. Yang, R.P. Shi, and C.P. Wang, Experimental Investigation of Phase Equilibria in the Cu-Ni-Si Ternary System, J. Alloys Compd., 2013, 578, p 439–447

    Article  Google Scholar 

  14. H. Azzeddine, B. Mehdi, L. Hennet, D. Thiaudière, B. Alili, M. Kawasaki, D. Bradai, and T.G. Langdon, An In Situ Synchrotron X-Ray Diffraction Study of Precipitation Kinetics in a Severely Deformed Cu-Ni-Si Alloy, Mater. Sci. Eng. A, 2014, 597, p 288–294

    Article  Google Scholar 

  15. C. Watanabe and R. Monzen, Coarsening of δ-Ni2Si Precipitates in a Cu-Ni-Si Alloy, J. Mater. Sci., 2011, 46(12), p 4327–4335

    Article  Google Scholar 

  16. Z.Y. Pan, M.P. Wang, Z. Li, C.P. Deng, S.H. Li, and Y.L. Jia, Progress of Study of Super-High Strength Cu-Ni-Si Alloy, Heat Treat. Met., 2007, 7, p 55–59

    Google Scholar 

  17. Z. Li, Z.Y. Pan, Y.Y. Zhao, Z. Xiao, and M.P. Wang, Microstructure and Properties of High Conductivity, Super High Strength Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg Alloy, J. Mater. Res., 2009, 24, p 2123–2129

    Article  Google Scholar 

  18. Q. Lei, Z. Li, M.P. Wang, L. Zhang, Z. Xiao, and Y.L. Jia, The Evolution of Microstructure in Cu-8.0 Ni-1.8 Si-0.15 Mg Alloy During Aging, Mater. Sci. Eng. A, 2010, 527, p 6728–6733

    Article  Google Scholar 

  19. J.Y. Cheng, B.B. Tang, F.X. Yu, and B. Shen, Evaluation of Nanoscaled Precipitates in a Cu-Ni-Si-Cr Alloy During Aging, J. Alloys Compd., 2014, 614, p 189–195

    Article  Google Scholar 

  20. A.Y. Khereddine, F.H. Larbi, H. Azzeddine, T. Baudin, F. Brisset, A.L. Helbert, M.H. Mathon, M. Kawasaki, D. Bradai, and T.G. Langdon, Microstructures and Textures of a Cu-Ni-Si Alloy Processed by High-Pressure Torsion, J. Alloys Compd., 2013, 574, p 361–367

    Article  Google Scholar 

  21. Q. Lei, Z. Li, C. Dai, J. Wang, X. Chen, J.M. Xie, W.W. Yang, and D.L. Chen, Effect of Aluminum on Microstructure and Property of Cu-Ni-Si Alloys, Mater. Sci. Eng. A, 2013, 572, p 65–74

    Article  Google Scholar 

  22. Q. Lei, Z. Li, T. Xiao, Y. Pang, Z.Q. Xiang, W.T. Qiu, and Z. Xiao, A New Ultrahigh Strength Cu-Ni-Si Alloy, Intermetallics, 2013, 42, p 77–84

    Article  Google Scholar 

  23. T. Konkova, S. Mironov, A. Korznikov, and S.L. Semiatin, Microstructural Response of Pure Copper to Cryogenic Rolling, Acta Mater., 2010, 58, p 5262–5273

    Article  Google Scholar 

  24. Y.P. Lü, D.A. Molodov, and G. Gottstein, Recrystallization Kinetics and Microstructure Evolution During Annealing of a Cold-Rolled Fe-Mn-C Alloy, Acta Mater., 2011, 59, p 3229–3243

    Article  Google Scholar 

  25. J.J. Sidor and L.A.I. Kestens, Analytical Description of Rolling Textures in Face-Centred- Cubic Metals, Scr. Mater., 2013, 68(5), p 273–276

    Article  Google Scholar 

  26. N. Jia, Z.H. Nie, Y. Ren, R.L. Peng, Y.D. Wang, and X. Zhao, Formation of Deformation Textures in Face-Centered-Cubic Materials Studied by In-Situ High-Energy X-Ray Diffraction and Self-Consistent Model, Metall. Mater. Trans. A, 2010, 41(5), p 1246–1254

    Article  Google Scholar 

  27. Y. Huang and P.B. Prangnell, The Effect of Cryogenic Temperature and Change in Deformation Mode on the Limiting Grain Size in a Severely Deformed Dilute Aluminium Alloy, Acta Mater., 2008, 56(7), p 1619–1632

    Article  Google Scholar 

  28. R.E. Smallman and D. Green, The Dependence of Rolling Texture on Stacking Fault Energy, Acta Metall., 1964, 12(2), p 145–154

    Article  Google Scholar 

  29. S.H. Kim, S.Z. Han, C.J. Kim, I.Y. Hwang, and F.X. Yin, Evolution of Rolling Textures of Cold Rolled Copper Foils, Mater. Trans., 2009, 50(3), p 537–543

    Article  Google Scholar 

  30. I.A. Yakubtsov, A. Ariapour, and D.D. Perovic, Effect of Nitrogen on Stacking Fault Energy of F.C.C. Iron-Based Alloys, Acta Mater., 1999, 47(4), p 1271–1279

    Article  Google Scholar 

  31. Q. Lei, Z. Li, A.Y. Zhu, W.T. Qiu, and S.Q. Liang, The Transformation Behavior of Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg Alloy During Isothermal Heat Treatment, Mater. Charact., 2011, 62, p 904–911

    Article  Google Scholar 

  32. Q. Lei, Z. Li, J. Wang, S. Li, L. Zhang, and Q.Y. Dong, High-Temperature Deformation Behavior of Cu-6.0Ni-1.0Si-0.5Al-0.15 Mg-0.1Cr Alloy, J. Mater. Sci., 2012, 47, p 6034–6042

    Article  Google Scholar 

  33. F.H. Larbi, H. Azzeddine, T. Baudin, M.H. Mathon, F. Brisset, A.L. Helbert, M. Kawasaki, D. Bradai, and T.G. Langdon, Microstructure and Texture Evolution in a Cu-Ni-Si alloy Processed by Equal-Channel Angular Pressing, J. Alloys Compd., 2015, 638(25), p 88–94

    Article  Google Scholar 

  34. H. Matsunaga, Z. Horita, K. Imamura, T. Kiss, and X. Sauvage, Aging Behavior of Cu-Ni-Si Alloy Processed by High-Pressure Torsion, Mater. Sci. Form., 2011, 667–669, p 307–312

    Google Scholar 

  35. I. Altenberger, H.A. Kuhn, M. Gholami, M. Mhaede, and L. Wangner, Ultrafine-Grained Precipitation Hardened Copper Alloy by Swaging or Accumulative Roll Bonding, Metals, 2015, 5, p 763–766

    Article  Google Scholar 

Download references

Acknowledgments

The authors are pleased to acknowledge the financial supply supported by the National Natural Science Foundation of China (51271203), the PPP Project between the CSC (China Scholarship Council) and the DAAD (German Academic Exchange Service), and the Nonferrous Metals Science Foundation of HNG-CSU (YSZN2013CL06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Q., Li, Z., Hu, W.P. et al. Microstructure Evolution and Hardness of an Ultra-High Strength Cu-Ni-Si Alloy During Thermo-mechanical Processing. J. of Materi Eng and Perform 25, 2615–2625 (2016). https://doi.org/10.1007/s11665-016-2147-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2147-8

Keywords

Navigation