Skip to main content
Log in

Microstructural Characteristics and Mechanical Properties of 7050-T7451 Aluminum Alloy Friction Stir-Welded Joints

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The ultra-high-strength Al-Zn-Mg-Cu alloy, 7050-T7451, was friction stir welded at a constant tool rotation speed of 600 rpm. Defect-free welds were successfully obtained at a welding speed of 100 mm/min, but lack-of-penetration defect was formed at a welding speed of 400 mm/min. The as-received material was mainly composed of coarse-deformed grains with some fine recrystallized grains. Fine equiaxed, dynamic, recrystallized grains were developed in the stir zone, and elongated grains were formed in the thermomechanically affected zone with dynamic recovered subgrains. Grain sizes in different regions of friction stir-welded joints varied depending on the welding speed. The sizes and distributions of precipitates changed in different regions of the joint, and wider precipitation free zone was developed in the heat-affected zone compared to that in the base material. Hardness of the heat-affected zone was obviously lower than that of the base material, and the softening region width was related to the welding speed. The tensile strength of the defect-free joints increased with the increasing welding speed, while the lack-of-penetration defect greatly reduced the tensile strength. The tensile fracture path was significantly influenced by the position and orientation of lack-of-penetration defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller, Recent Development in Aluminium Alloys for Aerospace Applications, Mater. Sci. Eng. A, 2000, 280, p 102–107

    Article  Google Scholar 

  2. T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871

    Article  Google Scholar 

  3. W.H. Kerans, Welding Handbook, 7th ed., American Welding Society, Miami, 1982

    Google Scholar 

  4. W.M. Thomas, E.D. Nicholas, J.C. NeedHam, M.G. Murch, P. Templesmith, C.J. Dawes. Friction Stir Welding. International Patent Application No. PCT/GB92102203 and Great Britain Patent Application No. 9125978.8, 1991.

  5. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78

    Article  Google Scholar 

  6. R. Nandan, T. DebRoy, and H. Bhadeshia, Recent Advances in Friction Stir Welding—Process, Weldment Structure and Properties, Prog. Mater. Sci., 2008, 53, p 980–1023

    Article  Google Scholar 

  7. P.L. Threadgill, A.J. Leonard, H.R. Shercliff, and P.J. Withers, Friction Stir Welding of Aluminium Alloys, Int. Mater. Rev., 2009, 54, p 49–93

    Article  Google Scholar 

  8. P.S. De and R.S. Mishra, Friction Stir Welding of Precipitation Strengthened Aluminium Alloys: Scope and Challenges, Sci. Technol. Weld. Join., 2011, 16, p 343–347

    Article  Google Scholar 

  9. A. Simar, Y. Brechet, B. Meester, A. Denquin, C. Gallais, and T. Pardoen, Integrated Modeling of Friction Stir Welding of 6xxx Series Al Alloys: Process, Microstructure and Properties, Prog. Mater. Sci., 2012, 57, p 95–183

    Article  Google Scholar 

  10. G. Ccedilam and S. Mistikoglu, Recent Developments in Friction Stir Welding of Al-Alloys, J. Mater. Eng. Perform., 2014, 23, p 1936–1953

    Article  Google Scholar 

  11. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, and M. Calabrese, Friction-Stir Welding Effects on Microstructure and Fatigue of Aluminum Alloy 7050-T7451, Scr. Mater., 2003, 48, p 1451–1455

    Article  Google Scholar 

  12. J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural Investigation Friction Stir Welded 7050-T651 Aluminium, Acta Mater., 2003, 51, p 713–729

    Article  Google Scholar 

  13. K.V. Jata, K.K. Sankaran, and J.J. Ruschau, A Cast 7050 Friction Stir Weld with Scandium: Microstructure, Corrosion and Environmental Assisted Cracking, Metall. Mater. Trans. A, 2000, 31, p 2181–2192

    Article  Google Scholar 

  14. P.S. Pao, S.J. Gill, C.R. Feng, and K.K. Sankaran, Evolution of Microstructure and Mechanical Properties in Naturally Aged 7050 and 7075 Al Friction Stir Welds, Scr Mater., 2001, 45, p 605–612

    Article  Google Scholar 

  15. J.B. Lumsden, M.W. Mahoney, C.G. Rhodes, and G.A. Pollock, Effect of Initial Base Metal Temper on Mechanical Properties in AA7050 Friction Stir Welds, Corrosion, 2003, 59, p 212–219

    Article  Google Scholar 

  16. C.S. Paglia, K.V. Jata, and R.G. Buchheit, Effects of Thermal Boundary Conditions in Friction Stir Welded AA7050-T7 Sheets, Mater. Sci. Eng. A, 2006, 424, p 196–204

    Article  Google Scholar 

  17. C.S. Paglia and R.G. Buchheit, Improvement of Weld Temperature Distribution and Mechanical Properties of 7050 Aluminum Alloy Butt Joints by Submerged Friction Stir Welding, Mater. Sci. Eng. A, 2008, 492, p 250–254

    Article  Google Scholar 

  18. C.B. Fuller, M.W. Mahoney, M. Calabrese, and L. Micona, Relationships Between Weld Parameters, Hardness Distribution and Temperature History in Alloy 7050 Friction Stir Welds, Mater. Sci. Eng. A, 2010, 527, p 2233–2240

    Article  Google Scholar 

  19. J. Yan and A.P. Reynolds, The Time-Temperature-Corrosion Susceptibility in a 7050-T7451 Friction Stir Weld, Sci. Technol. Weld. Join., 2009, 14, p 282–287

    Article  Google Scholar 

  20. P. Upadhyay and A.P. Reynolds, Corrosion-Fatigue Crack Growth in Friction Stir Welded Al 7050, Mater. Sci. Eng. A, 2010, 527, p 1537–1543

    Article  Google Scholar 

  21. A.P. Reynolds, W. Tang, Z. Khandkar, J.A. Khan, and K. Lindner, Corrosion Behavior of Friction-Stir-Welded AA7050-T7651, Sci. Technol. Weld. Join., 2005, 10, p 190–199

    Article  Google Scholar 

  22. N. Kamp, A.P. Reynolds, and J.D. Robson, Fine-Grain Evolution in Friction-Stir Processed 7050 Aluminum, Sci. Technol. Weld. Join., 2009, 14, p 589–596

    Article  Google Scholar 

  23. R.D. Fu, Z.Q. Sun, R.C. Sun, Y. Li, H.J. Liu, and L. Liu, Modelling of 7050 Aluminium Alloy Friction Stir Welding, Mater. Des., 2011, 32, p 4825–4831

    Article  Google Scholar 

  24. C.T. Canaday, M.A. Moore, W. Tang, and A.P. Reynolds, Through Thickness Property Variations in a Thick Plate AA7050 Friction Stir Welded Joint, Mater. Sci. Eng. A, 2013, 559, p 678–682

    Article  Google Scholar 

  25. K.N. Krishnan, On the Formation of Onion Rings in Friction Stir Welds, Mater. Sci. Eng. A, 2002, 327, p 246–251

    Article  Google Scholar 

  26. G.E. Totten and D.S. MacKenzie, Handbook of Aluminum: Physical Metallurgy and Processes, Vol 1, Marcel Dekker, New York, 2003

    Book  Google Scholar 

  27. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Amsterdam, 2004

    Google Scholar 

  28. A.A. Hassan, P.B. Prangnell, A.F. Norman, D.A. Price, and S.W. Williams, Effect of Welding Parameters on Nugget Zone Microstructure and Properties in High Strength Aluminium Alloy Friction Stir welds, Sci. Technol. Weld. Join., 2003, 8, p 257–268

    Article  Google Scholar 

  29. Cavaliere P, Squillace A, Panella F, Effect of Welding Parameters on Mechanical and Microstructural Properties of AA6082 Joints Produced by Friction Stir Welding, J. Mater. Process. Technol., 2008, 200, p 364–372

    Article  Google Scholar 

  30. P.N. Adler, R. Delasi, Calorimetric Studies of 7000 Series Aluminum Alloys: II. Comparison of 7075, 7050 and RX720 Alloys. Metall. Trans. A, 1977, 8, p 1185–1190

  31. Y.S. Sato and H. Kokawa, Distribution of Tensile Property and Microstructure in Friction Stir Weld of 6063 Aluminum, Metall. Trans. A, 2001, 32, p 3023–3031

    Article  Google Scholar 

  32. M. Peel, A. Steuwer, M. Preuss, and P.J. Withers, Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminium AA5083 Friction Stir Welds, Acta Mater., 2003, 51, p 4791–4801

    Article  Google Scholar 

  33. H.J. Liu, H. Fujii, M. Maeda, and K. Nogi, Mechanical Properties of Friction Stir Welded Joints of 1050-H24 Aluminium Alloy, Sci. Technol. Weld. Join., 2003, 8, p 450–454

    Article  Google Scholar 

  34. S.R. Ren, Z.Y. Ma, and L.Q. Chen, Effect of Welding Parameters on Tensile Properties and Fracture Behavior of Friction Stir Welded Al-Mg-Si Alloy, Scr. Mater., 2007, 56, p 69–72

    Article  Google Scholar 

Download references

Acknowledgments

The research was sponsored by the China Postdoctoral Science Foundation (Grant No. 2015M570287), the Indigenous Innovation and Achievement Transformation Program of Shandong Province (2014CGZH1003), the Key Research & Development program of Shandong Province (2015GGX103002), the Industry-Study-Research Cooperative Innovation Demonstration Project of Weihai City (2014CXY02), the Science and Technology Development Program of Weihai City (2014DXGJ17), and the Natural Scientific Research Innovation in Harbin Institute of Technology (HIT.NSRIF.2014131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Wang, T., Zhou, W.L. et al. Microstructural Characteristics and Mechanical Properties of 7050-T7451 Aluminum Alloy Friction Stir-Welded Joints. J. of Materi Eng and Perform 25, 2542–2550 (2016). https://doi.org/10.1007/s11665-016-2106-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2106-4

Keywords

Navigation