Influence of Fe3O4 Nanoparticles in Hydroxyapatite Scaffolds on Proliferation of Primary Human Fibroblast Cells

  • H. Maleki-GhalehEmail author
  • E. Aghaie
  • A. Nadernezhad
  • M. Zargarzadeh
  • A. Khakzad
  • M. S. Shakeri
  • Y. Beygi Khosrowshahi
  • M. H. Siadati


Modern techniques for expanding stem cells play a substantial role in tissue engineering: the raw material that facilitates regeneration of damaged tissues and treats diseases. The environmental conditions and bioprocessing methods are the primary determinants of the rate of cultured stem cell proliferation. Bioceramic scaffolds made of calcium phosphate are effective substrates for optimal cell proliferation. The present study investigates the effects of two bioceramic scaffolds on proliferating cells in culture media. One scaffold was made of hydroxyapatite and the other was a mixture of hydroxyapatite and ferromagnetic material (Fe3O4 nanoparticles). Disk-shaped (10 mm × 2 mm) samples of the two scaffolds were prepared. Primary human fibroblast proliferation was 1.8- and 2.5-fold faster, respectively, when cultured in the presence of hydroxyapatite or ferrous nanoparticle/hydroxyapatite mixtures. Optical microscopy images revealed that the increased proliferation was due to enhanced cell-cell contact. The presence of magnetic Fe3O4 nanoparticles in the ceramic scaffolds significantly increased cell proliferation compared to hydroxyapatite scaffolds and tissue culture polystyrene.


biomaterials ceramics ceramic matrix magnetic materials nanomaterials 


  1. 1.
    A.J. Mothe and C.H. Tator, Advances in Stem Cell Therapy for Spinal Cord Injury, J. Clin. Invest., 2012, 122(11), p 3824–3834CrossRefGoogle Scholar
  2. 2.
    F. Berthiaume, T.J. Maguire, and M.L. Yarmush, Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges, Ann. Rev. Chem. Biomol. Eng., 2011, 2, p 403–430CrossRefGoogle Scholar
  3. 3.
    M. Mimeault and S.K. Batra, Concise Review: Recent Advances on the Significance of Stem Cells in Tissue Regeneration and Cancer Therapies, Stem Cells, 2006, 24, p 2319–2345CrossRefGoogle Scholar
  4. 4.
    A.M. Parr, C.H. Tator, and A. Keating, Bone Marrow-Derived Mesenchymal Stromal Cells for the Repair of Central Nervous System Injury, Bone Marrow Transpl., 2007, 40, p 609–619CrossRefGoogle Scholar
  5. 5.
    K.E. Hatzistergos, H. Quevedo, B.N. Oskouei, H. Qinghua, G.S. Feigenbaum, I.S. Margitich, R. Mazhari et al., Bone Marrow Mesenchymal Stem Cells Stimulate Cardiac Stem Cell Proliferation and Differentiation Novelty and Significance, Circ. Res., 2010, 107, p 913–922CrossRefGoogle Scholar
  6. 6.
    M. Körbling and Z. Estrov, Adult Stem Cells for Tissue Repair—A New Therapeutic Concept, N. Engl. J. Med., 2003, 349, p 570–582CrossRefGoogle Scholar
  7. 7.
    C.P. Hodgkinson, J.A. Gomez, M. Mirotsou, and V.J. Dzau, Genetic Engineering of Mesenchymal Stem Cells and its Application in Human Disease Therapy, Hum. Gene Ther., 2010, 21, p 1513–1526CrossRefGoogle Scholar
  8. 8.
    S. Polgar, L. Karimi, and M.E. Morris, Stem Cell Therapy for Parkinson’ s disease: Are Double-Blind Randomized Control Trials the Best Design for Quantifying Therapy Outcomes?, J. Neurol. Neurophysiol., 2013, 4, p 170. doi: 10.4172/2155-9562.1000170 Google Scholar
  9. 9.
    I. García-Gómez, G. Elvira, A.G. Zapata, M.L. Lamana, M. Ramírez, J. García Castro, M. García Arranz, A. Vicente, J. Bueren, and D. García-Olmo, Mesenchymal Stem Cells: Biological Properties and Clinical Applications, Expert Opin. Biol. Ther., 2010, 10(10), p 1453–1468CrossRefGoogle Scholar
  10. 10.
    L. Mazzini, K. Mareschi, I. Ferrero, E. Vassallo, G. Oliveri, N. Nasuelli, G.D. Oggioni, L. Testa, and F. Fagioli, Stem Cell Treatment in Amyotrophic Lateral Sclerosis, J. Neurol. Sci., 2008, 265, p 78–83CrossRefGoogle Scholar
  11. 11.
    Y. Ikada, Challenges in Tissue Engineering, J. R. Soc. Interface, 2006, 3, p 589–601CrossRefGoogle Scholar
  12. 12.
    A.D. Ebert and C.N. Svendsen, Human Stem Cells and Drug Screening: Opportunities and Challenges, Nat. Rev. Drug Discov., 2010, 9, p 367–372CrossRefGoogle Scholar
  13. 13.
    Y. Ikada, Tissue Engineering: Fundamentals and Applications, Vol 46, Elsevier, San Diego, 2011Google Scholar
  14. 14.
    H. Patil, I.S. Chandel, A.K. Rastogi, and P. Srivastava, Studies on a Novel Bioreactor Design for Chondrocyte Culture, International Journal of Tissue Engineering, 2013, 2013, p 1–7CrossRefGoogle Scholar
  15. 15.
    J.E. Hambor, Bioreactor Design and Bioprocess Controls for Industrialized Cell Processing, BioProcess Int., 2012, 10, p 22–33Google Scholar
  16. 16.
    M. Serra, C. Brito, C. Correia, and P.M. Alves, Process Engineering of Human Pluripotent Stem Cells for Clinical Application, Trends Biotechnol., 2012, 30, p 350–359CrossRefGoogle Scholar
  17. 17.
    A.C. Allori, A.M. Sailon, and S.M. Warren, Biological Basis of Bone Formation, Remodeling, and Repair—Part I: Biochemical Signaling Molecules, Tissue Eng. B, 2008, 14, p 259–273CrossRefGoogle Scholar
  18. 18.
    G.M. Harbers and D.W. Grainger, Cell-Material Interactions: Fundamental Design Issues for Tissue Engineering and Clinical Considerations. An Introduction to Biomaterials, Taylor Francis Group, Boca Raton, FL, 2006, p 15–45Google Scholar
  19. 19.
    G. Huang, L. Wang, S.Q. Wang, Y. Han, W. Jinhui, Q. Zhang, X. Feng, and T.J. Lu, Engineering Three-Dimensional Cell Mechanical Microenvironment with Hydrogels, Biofabrication, 2012, 4, p 042001CrossRefGoogle Scholar
  20. 20.
    S. Mashayekhan, M. Hajiabbas, and A. Fallah, Stem Cells in Tissue Engineering, 2013, doi: 10.5772/54371
  21. 21.
    T. Mygind, M. Stiehler, A. Baatrup, H. Li, X. Zou, A. Flyvbjerg et al., Mesenchymal Stem Cell Ingrowth and Differentiation on Coralline Hydroxyapatite Scaffolds, Biomaterials, 2007, 28(6), p 1036–1047CrossRefGoogle Scholar
  22. 22.
    D. Turhani, E. Watzinger, M. Weissenbock, B. Cvikl, D. Thurnher, G. Wittwer et al., Analysis of Cell-Seeded 3-Dimensional Bone Constructs Manufactured In Vitro with Hydroxyapatite Granules Obtained from Red Algae, J. Oral Maxillofac. Surg., 2005, 63, p 673–681CrossRefGoogle Scholar
  23. 23.
    F.H. Liu, Fabrication of Bioceramic Bone Scaffolds for Tissue Engineering, J. Mater. Eng. Perform., 2014, 23, p 3762–3769CrossRefGoogle Scholar
  24. 24.
    J.G. Ocampo, M.E. Jaramillo, D.E. Sierra, and C.O. Orozco, Suspension Rheology, Porosity and Mechanical Strength of Porous Hydroxyapatite Obtained by Gel-casting and Infiltration, J. Mater. Eng. Perform., 2016, 25, p 431–442CrossRefGoogle Scholar
  25. 25.
    F. Bistolfi, Radiazioni non ionizzanti, ordine, disordine e biostrutture, Minerva Medica, Torino, 1989, p 209–246Google Scholar
  26. 26.
    E. Neumann, Membrane Electroporation: Toward a Molecular Mechanism. Electricity and Magnetism in Biology and Medicine, University of Bielefeld, Bielefeld, 1992Google Scholar
  27. 27.
    Y. Mouneimne, Electroinsertion of Proteins into Membranes: A Novel Approach to the Study of Membrane Receptors, Harvard University, USA. Electricity and Magnetism in Biology and Medicine, University of Bielefeld, San Francisco, 1992Google Scholar
  28. 28.
    C.E. Lindgren, Capturing the Aura Integrating Science, Technology and Metaphysics, Motilal Banarsidass Publishe, New Delhi, 2008Google Scholar
  29. 29.
    N. Dekhtyar, N. Polyaka, R. Sammons, 14th Baltic Conference on Biomedical Engineering and Medical Physics, Vol. 20, Springer, Berlin, 2008Google Scholar
  30. 30.
    D. Kumar, J.P. Gittings, I.G. Turner, C.R. Bowen, A. . Bastida-Hidalgo, and S.H. Cartmell, Polarization of Hydroxyapatite: Influence on Osteoblast Cell Proliferation, Acta Biomater., 2010, 6, p 1549–1554CrossRefGoogle Scholar
  31. 31.
    S. Bodhak, S. Bose, and A. Bandyopadhyay, Bone Cell-Material Interactions on Metal-Ion Doped Polarized Hydroxyapatite, Mater. Sci. Eng., C, 2011, 31, p 755–761CrossRefGoogle Scholar
  32. 32.
    W.R. Adey, Electromagnetics in Biology and Medicine, Modern Radio Science, H. Matsumoto, Ed., Oxford University Press, Oxford, 1993, p 245–277Google Scholar
  33. 33.
    T.Y. Tsong, Deciphering the Language of Cells, Trends Biochem. Sci., 1989, 14, p 89–92CrossRefGoogle Scholar
  34. 34.
    Z.J. Sienkiewicz, N.A. Cridland, C.I. Kowalczuk, and R.D. Saunders, Biological Effects of Electromagnetic Fields and Radiation, The Review of Radio Science 1990–1992, M.R. Stone, Ed., Oxford Science Publications, Oxford, 1993, p 737–770Google Scholar
  35. 35.
    A. Kodama, N. Kamei, G. Kamei, W. Kongcharoensombat, S. Ohkawa, A. Nakabayashi, and M. Ochi, In Vivo Bioluminescence Imaging of Transplanted Bone Marrow Mesenchymal Stromal Cells Using a Magnetic Delivery System in a Rat Fracture Model, Br. J. Bone Joint Surg., 2012, 94, p 998–1006CrossRefGoogle Scholar
  36. 36.
    J.I. Jacobson, R. Gorman, W.S. Yamanashi, B.B. Saxena, and L. Clayton, Low-Amplitude, Extremely Low Frequency Magnetic Fields for the Treatment of Osteoarthritic Knees: A Double-Blind Clinical Study, Altern. Ther. Health Med., 2001, 7(5), p 54–64Google Scholar
  37. 37.
    R. Zboril, M. Mashlan, and D. Petridis, Iron(III) Oxides from Thermal Processes Synthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications, Chem. Mater., 2002, 14(3), p 969–982CrossRefGoogle Scholar
  38. 38.
    H.M. Kothari, E.A. Kulp, S.J. Limmer, P. Poizot, E.W. Bohannan, and J.A. Switzer, Electrochemical Deposition and Characterization of Fe3O4 Films Produced by the Reduction of Fe(III)-Triethanolamine, J. Mater. Res., 2006, 21(1), p 293–301CrossRefGoogle Scholar
  39. 39.
    M.E. Bahrololoom, M. Javidi, S. Javadpour, and J. Ma, Characterisation of Natural Hydroxyapatite Extracted from Bovine Cortical Bone Ash, J. Ceram. Process. Res., 2009, 10, p 129–138Google Scholar
  40. 40.
    K. Haberko, M.M. Bucko, J. Brzezińska-Miecznik, M. Haberko, W. Mozgawa, T. Panz, A. Pyda, and J. Zar, ebski, Natural Hydroxyapatite—Its Behaviour During Heat Treatment, J. Eur. Ceram. Soc., 2006, 26, p 537–542CrossRefGoogle Scholar
  41. 41.
    Y. Li, C.T. Nam, and C.P. Ooi, Iron (III) and Manganese (II) Substituted Hydroxyapatite Nanoparticles: Characterization and Cytotoxicity Analysis, J. Phys., 2009, 187(1), p 012024Google Scholar
  42. 42.
    R.P. Franke and F. Jung, Interaction of Blood Components and Blood Cells with Body Foreign, Surfaces, Ser. Biomech., 2012, 27, p 51–58Google Scholar
  43. 43.
    Genel Histoloji Erkocak, Dag Okan, Yay ltd. sti, Istanbul, 1983Google Scholar
  44. 44.
    R. Glicklis, L. Shapiro, R. Agbaria, J.C. Merchuk, and S. Cohen, Hepatocyte Behavior Within Three-Dimensional Porous Alginate Scaffolds, Biotechnol. Bioeng., 2000, 67, p 344–353CrossRefGoogle Scholar
  45. 45.
    E. McCafferty, Relationship Between the Isoelectric Point (pHpzc) and the Potential of Zero Charge (E pzc) for Passive Metals, Electrochim. Acta, 2010, 55, p 1630–1637CrossRefGoogle Scholar
  46. 46.
    M. Kosmulski, pH-Dependent Surface Charging and Points of Zero Charge, J. Colloid Interface Sci., 2006, 298, p 730–741CrossRefGoogle Scholar
  47. 47.
    M. Kosmulski, The pH-Dependent Surface Charging and Points of Zero Charge, J. Colloid Interface Sci., 2011, 353, p 1–15CrossRefGoogle Scholar
  48. 48.
    F. Bistolfi, Campi magnetici in medicina, Ed. Minerva Medica, Torino, 1993Google Scholar
  49. 49.
    C.W. Smith and S. Best, Electromagnetic Man, J.M. Dent & Sonns, London, 1989Google Scholar
  50. 50.
    F. Bistolfi, , Radiazioni non ionizzanti, ordine, disordine e biostruture, Ed. Minerva Medica, Torino, 1989Google Scholar
  51. 51.
    M. Cifra, J.Z. Fields, and A. Farhadi, Electromagnetic Cellular Interactions, Prog. Biophys. Mol. Biol., 2011, 105, p 223–246CrossRefGoogle Scholar
  52. 52.
    H. Fröhlich, The Extraordinary Dielectric Properties of Biological Materials and the Action of Enzymes, Proc. Natl. Acad. Sci., 1975, 72, p 4211–4215CrossRefGoogle Scholar
  53. 53.
    C. Rossi, A. Foletti, A. Magnani, and S. Lamponi, New Perspectives in Cell Communication: Bioelectromagnetic Interactions, Semin. Cancer Biol., 2011, 21, p 207–214CrossRefGoogle Scholar
  54. 54.
    S. Seckiner Gorgun, Studies on the Interaction Between Electromagnetic Fields and Living Matter Neoplastic Cellular Culture, Front. Prospect., 1998, 7(2), p 1–21Google Scholar
  55. 55.
    L.-Y. Sun, D.-K. Hsieh, Y. Tzai-Chiu, H.-T. Chiu, L. Sheng-Fen, G.-H. Luo, T.K. Kuo, O.K. Lee, and T.W. Chiou, Effect of Pulsed Electromagnetic Field on the Proliferation and Differentiation Potential of Human Bone Marrow Mesenchymal Stem Cells, Bioelectromagnetics, 2009, 30, p 251–260CrossRefGoogle Scholar
  56. 56.
    M.A. Omar, Elementary Solid State Physics, Pearson Education India, New Delhi, 1999Google Scholar
  57. 57.
    W. Adey, Biological Effects of Electromagnetic Fields, J. Cell. Biochem., 1993, 51, p 410–416CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • H. Maleki-Ghaleh
    • 1
    Email author
  • E. Aghaie
    • 2
  • A. Nadernezhad
    • 3
  • M. Zargarzadeh
    • 4
  • A. Khakzad
    • 5
  • M. S. Shakeri
    • 5
  • Y. Beygi Khosrowshahi
    • 6
  • M. H. Siadati
    • 7
  1. 1.Faculty of Materials EngineeringSahand University of TechnologyTabrizIran
  2. 2.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada
  3. 3.Biomaterials Group, Faculty of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
  4. 4.Faculty of Science and EngineeringSharif University of TechnologyKishIran
  5. 5.Materials and Energy Research CenterKarajIran
  6. 6.Chemical Engineering Group, Faculty of EngineeringAzarbaijan Shahid Madani UniversityTabrizIran
  7. 7.Faculty of Materials Science and EngineeringK. N. Toosi University of TechnologyTehranIran

Personalised recommendations