Effect of Post Weld Heat Treatment on Mechanical and Corrosion Behaviors of NiTi and Stainless Steel Laser-Welded Wires

  • G. R. Mirshekari
  • A. Saatchi
  • A. Kermanpur
  • S. K. Sadrnezhaad


Effects of post weld heat treatment (PWHT) on mechanical properties and corrosion behavior of NiTi shape memory wire, laser welded to the 304 stainless steel wire were investigated. The results showed that PWHT at 200 °C increased corrosion resistance and tensile strength of the joint up to ~1.8 times that of the as-weld joint, with no heat treatment. On the contrary, precipitation of neoteric intermetallic compounds like Fe2Ti, Cr2Ti, FeNi, Ni3Ti, and Ti2Ni in the welded region deteriorated these properties, when PWHT was conducted at 400 °C. Due to the vital effects of the PWHT performed after the laser welding, careful control of the PWHT temperature was found to be a prerequisite for achievement of desirable properties in the dissimilar NiTi-304 stainless steel laser-welded wires.


corrosion behavior laser welding mechanical properties NiTi shape memory alloy post weld heat treatment stainless steel 


  1. 1.
    T. Duerig, A. Pelton, and D. Stockel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 273–275, p 149–160CrossRefGoogle Scholar
  2. 2.
    N.B. Morgan, Medical Shape Memory Alloy Applications—The Market and Its Products, Mater. Sci. Eng. A, 2004, 378, p 16–23CrossRefGoogle Scholar
  3. 3.
    F. Nematzadeh and S.K. Sadrnezhaad, Effects of the Ageing Treatment on the Superelastic Behavior of a Nitinol Stent for an Application in the Esophageal Duct: A Finite-Element Analysis, Mater. Technol., 2013, 47, p 45–51Google Scholar
  4. 4.
    S.K. Sadrnezhaad, N.H. Nemati, and R. Bagheri, Improved Adhesion of NiTi Wire to Silicone Matrix for Smart Composite Medical Applications, Mater. Des., 2009, 30, p 3667–3672CrossRefGoogle Scholar
  5. 5.
    T. Shinoda, T. Tsuchiya, and H. Takahashi, Functional Characteristics of Friction Welded Near-Equiatomic TiNi Shape Memory Alloy, Trans. Jap. Weld. Soc., 1991, 22, p 30–36Google Scholar
  6. 6.
    S. Fukumoto, T. Inoue, S. Mizuno, K. Okita, T. Tomita, and A. Yamamoto, Friction Welding of TiNi Alloy to Stainless Steel Using Ni Interlayer, Sci. Technol. Weld. Join., 2010, 15, p 124–130CrossRefGoogle Scholar
  7. 7.
    A. Ikai, K. Kimura, and H. Tobush, TIG Welding and Shape Memory Effect of TiNi Shape Memory Alloy, J. Intell. Mater. Syst. Str., 1996, 7, p 646–654CrossRefGoogle Scholar
  8. 8.
    C. Van der Eijk, H. Fostervoll, Z.K. Sallom, and O.M. Akselsen, Plasma Welding of NiTi to NiTi, Stainless Steel and Hastelloy C276, in Proceedings of the ASM Materials Sol Conference, October 13–15, 2003 (Pittsburgh, Pennsylvania), p 125–129.Google Scholar
  9. 9.
    M. Seki, H. Yamamoto, M. Nojiri, K. Uenishi, and K.F. Kobayashi, Brazing of Ti-Ni Shape Memory Alloy with Stainless Steel, J. Jpn. Inst. Metal., 2000, 64, p 632–640Google Scholar
  10. 10.
    X.M. Qiu, M.G. Li, D.Q. Sun, and W.H. Liu, Study on Brazing of TiNi Shape Memory Alloy with Stainless Steels, J. Mater. Proc. Technol., 2006, 176, p 8–12CrossRefGoogle Scholar
  11. 11.
    H. Gugel, A. Schuermann, and W. Teisen, Laser Welding of NiTi Wires, Mater. Sci. Eng., A, 2008, 481–482, p 668–671CrossRefGoogle Scholar
  12. 12.
    L.A. Vieira, F.B. Fernandes, R.M. Miranda, R.J.C. Silva, L. Quintino, A. Cuesta, and J.L. Ocana, Mechanical Behaviour of Nd: YAG Laser Welded Superelastic NiTi, Mater. Sci. Eng. A, 2011, 528, p 5560–5565CrossRefGoogle Scholar
  13. 13.
    Y.H. Hsu, S.K. Wang, and C. Chen, Effect of CO2 Laser Welding on the Shape-Memory and Corrosion Characteristics of TiNi Alloy, Metall. Mater. Trans. A, 2001, 32, p 569–576CrossRefGoogle Scholar
  14. 14.
    G. Padmanaban and V. Balasubramanian, Optimization of Laser Beam Welding Process Parameters to Attain Maximum Tensile Strength in AZ31B Magnesium Alloy, Opt. Las. Technol., 2010, 42, p 1253–1260CrossRefGoogle Scholar
  15. 15.
    A. Falvo, F.M. Furgiuele, and C. Maletta, Laser Welding of a NiTi Alloy: Mechanical and Shape Memory Behavior, Mater. Sci. Eng. A, 2005, 412, p 235–240CrossRefGoogle Scholar
  16. 16.
    X.J. Yan, D.Z. Yang, and X.P. Liu, Corrosion Behavior of a Laser-Welded NiTi Shape Memory Alloy, Mater. Char., 2007, 58, p 623–628CrossRefGoogle Scholar
  17. 17.
    A. Tuissi, S. Besseghini, T. Ranucci, F. Squatrito, and M. Pozzi, Effect of Nd-YAG Laser Welding on the Functional Properties of the Ni–49.6 at.% Ti, Mater. Sci. Eng. A, 1999, 273–275, p 813–817CrossRefGoogle Scholar
  18. 18.
    G.R. Mirshekari, A. Saatchi, A. Kermanpur, and S.K. Sadrnezhaad, Laser Welding of NiTi Shape Memory Alloy: Comparison of the Similar and Dissimilar Joints to AISI, 304 Stainless Steel, Opt. Las. Technol., 2013, 54, p 151–158CrossRefGoogle Scholar
  19. 19.
    H.M. Li, D.Q. Sun, X.L. Cai, P. Dong, and W.Q. Wang, Laser Welding of TiNi Shape Memory Alloy and Stainless Steel Using Ni Interlayer, Mater. Des., 2012, 39, p 285–293CrossRefGoogle Scholar
  20. 20.
    H.M. Li, D.Q. Sun, X.L. Cai, P. Dong, and X. Gu, Laser Welding of TiNi Shape Memory Alloy and Stainless Steel Using Co filler Metal, Opt. Las. Technol., 2013, 45, p 453–460CrossRefGoogle Scholar
  21. 21.
    M.G. Li, D.Q. Sun, X.M. Qiu, J.B. Liu, K. Miao, and W.C. Wu, Effects of Silver Based Filler Metals on Microstructure and Properties of Laser Brazed Joints Between TiNi Shape Memory Alloy and Stainless Steel, Sci. Technol. Weld. Join., 2007, 12, p 183–188CrossRefGoogle Scholar
  22. 22.
    C.W. Chan, H.C. Man, and T.M. Yue, Effect of Postweld Heat Treatment on the Microstructure and Cyclic Deformation Behavior of Laser-Welded NiTi-Shape Memory Wires, Metall. Mater. Trans. A, 2012, 43A, p 1956–1965CrossRefGoogle Scholar
  23. 23.
    C.W. Chan, H.C. Man, and T.M. Yue, Effect of Post-weld Heat-Treatment on the Oxide Film and Corrosion Behaviour of Laser-Welded Shape Memory NiTi Wires, Corr. Sci., 2012, 56, p 158–167CrossRefGoogle Scholar
  24. 24.
    S. Kou, Welding Metallurgy, 2nd ed., Wiley, New Jersey, 2003Google Scholar
  25. 25.
    M.S. Laridjani, A. Amadeh, and H. Kashani, Stellite 21 Coatings on AISI, 410 Martensitic Stainless Steel by Gas Tungsten Arc Welding, Mater. Sci. Technol., 2010, 26, p 1184–1190CrossRefGoogle Scholar
  26. 26.
    S.A. Shabalovskaya, Surface, Corrosion, and Biocompatibility Aspects of Nitinol as an Implant Material, Bio-Med. Mater. Eng., 2002, 12, p 69–109Google Scholar
  27. 27.
    J.R. Groza, M. Eslamloo-Grami, and R. Bandy, The Effect of Thermo-mechanical Treatment on the Pitting Corrosion of Reinforcing Carbon Steel Bars, Mater. Corr., 1993, 44, p 359–366Google Scholar
  28. 28.
    K.Y. Chiu, F.T. Cheng, and H.C. Man, Corrosion Behavior of AISI, 316L Stainless Steel Surface-Modified with NiTi, Surf. Coat. Technol., 2006, 200, p 6054–6061CrossRefGoogle Scholar
  29. 29.
    Z. Szklarska-Smialowska, Pitting Corrosion of Aluminum, Corr. Sci., 1999, 41, p 1743–1767CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • G. R. Mirshekari
    • 1
  • A. Saatchi
    • 1
    • 2
  • A. Kermanpur
    • 1
  • S. K. Sadrnezhaad
    • 3
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Materials Science and EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran

Personalised recommendations