Skip to main content
Log in

Microstructure and Mechanical Properties of Laser-Welded Joints of Ti-22Al-25Nb/TA15 Dissimilar Titanium Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Laser beam welding (LBW) was applied to join 1-mm-thick dissimilar titanium alloys, Ti-22Al-25Nb (at.%) and TA15, and the microstructure and mechanical properties of the welded joints were systematically analyzed. Defect-free joints were obtained, and the fusion zone mainly consisted of B2 and martensitic α′ phases because of the uneven distribution of the β phase stabilizer and rapid cooling rate of LBW. The phase compositions of the heat-affected zone varied with the different thermal cycles during the welding process. The different microstructures of the dissimilar titanium alloys led to an unsymmetrical hardness profile, with the welded seam exhibiting the lowest value of 271 HV. In room-temperature tensile tests, the fractures all occurred preferentially in the fusion zone. The strengths of the joints were close to those of the base metal but with prominently decreasing ductility. In tensile tests performed at 550 °C, all the joints fractured in the TA15 base metal, and the strength and plasticity of the welds were equivalent to those of the TA15 base metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. Banerjee, A.K. Gogia, T.K. Nandi, and V.A. Joshi, A New Ordered Orthorhombic Phase in a Ti3Al-Nb Alloy, Acta Metall., 1988, 36, p 871–882

    Article  Google Scholar 

  2. M. Hagiwara, A. Araoka, S.J. Yang, S. Emura, and S.W. Nam, The Effect of Lamellar Morphology on Tensile and High-Cycle Fatigue Behavior of Orthorhombic Ti-22Al-27Nb Alloy, Metall. Mater. Trans. A, 2004, 35A, p 2161–2170

    Article  Google Scholar 

  3. M. Hagiwara, S. Emura, A. Araoka, B.O. Kong, and F. Tang, Enhanced Mechanical Properties of Orthorhombic Ti2AlNb-Based Intermetallic Alloy, Met. Mater. Int., 2003, 9, p 265–272

    Article  Google Scholar 

  4. T.K. Nandy and D. Banerjee, Creep of the Orthorhombic Phase Based on the Intermetallic Ti2AlNb, Intermetallics, 2000, 8, p 915–928

    Article  Google Scholar 

  5. J.H. Peng, Y. Mao, S.Q. Li, and X.F. Sun, Microstructure Controlling by Heat Treatment and Complex Processing for Ti2AlNb Based Alloys, Mater. Sci. Eng. A, 2001, 299, p 75–80

    Article  Google Scholar 

  6. A. Pathak and A.K. Singh, A First Principles Study of Ti2AlNb Intermetallic, Solid State Commun., 2015, 204, p 9–15

    Article  Google Scholar 

  7. W. Wang, W.D. Zeng, C. Xue, X.B. Liang, and J.W. Zhang, Designed Bimodal Size Lamellar O Microstructures in Ti2AlNb Based Alloy: Microstructural Evolution, Tensile and Creep Properties, Mater. Sci. Eng. A, 2014, 618, p 288–294

    Article  Google Scholar 

  8. A.P. Wu, G.S. Zou, J.L. Ren, H.J. Zhang, G.Q. Wang, X. Liu, and M.R. Xie, Microstructures and Mechanical Properties of Ti-24Al-17Nb (at.%) Laser Beam Welding Joints, Intermetallics, 2002, 10, p 647–652

    Article  Google Scholar 

  9. G.L. Chen, Z.Q. Sun, and X. Zhou, Oxidation and Mechanical Behavior of Intermetallic Alloys in the Ti-Nb-Al Ternary System, Mater. Sci. Eng. A, 1992, 153, p 597–601

    Article  Google Scholar 

  10. J.K. Lee, M.H. Oh, and D.M. Wee, Long-Term Oxidation Properties of Al-Ti-Cr Two-Phase Alloys as Coating Materials for TiAl Alloys, Intermetallics, 2002, 10, p 347–352

    Article  Google Scholar 

  11. Z.L. Lei, Z.J. Dong, Y.B. Chen, L. Huang, and R.C. Zhu, Microstructure and Mechanical Properties of Laser Welded Ti-22Al-27Nb/TC4 Dissimilar Alloys, Mater. Sci. Eng. A, 2013, 559, p 909–916

    Article  Google Scholar 

  12. G. Çam and M. Koçak, Progress in Joining of Advanced Materials, Int. Mater. Rev., 1998, 43, p 1–44

    Article  Google Scholar 

  13. G. Çam and M. Koçak, Progress in Joining of Advanced Materials—Part 1: Solid State Joining, Fusion Joining, and Joining of Intermetallics, Sci. Technol. Weld. Join., 1998, 3, p 105–126

    Article  Google Scholar 

  14. G. Çam, Friction Stir Welded Structural Materials: Beyond Al-Alloys, Int. Mater. Rev., 2011, 56, p 1–48

    Article  Google Scholar 

  15. P.L. Threadgill, The Prospects for Joining Titanium Aluminides, Mater. Sci. Eng. A, 1995, 192–193, p 640–646

    Article  Google Scholar 

  16. L.Q. Li, Y.B. Chen, C.L. Zhang, Z.L. Lei, and G.Y. Xu, Crystallization Behavior of Ti3Al-Nb Alloy Laser Beam Welding Joints, Nonferrous Met. Soc. China, 2005, 15, p 16–20

    Google Scholar 

  17. L.J. Tan, Z.K. Yao, W. Zhou, H.Z. Guo, and Y. Zhao, Microstructure and Properties of Electron Beam Welded Joint of Ti-22Al-25Nb/TC11, Aerosp. Sci. Technol., 2010, 14, p 302–306

    Article  Google Scholar 

  18. H.T. Zhang, P. He, J.C. Feng, and H.Q. Wu, Interfacial Microstructure and Strength of the Dissimilar Joint Ti3Al/TC4 Welded by the Electron Beam Process, Mater. Sci. Eng. A, 2006, 425, p 255–259

    Article  Google Scholar 

  19. Y.Y. Liu, Z.K. Yao, H.Z. Guo, and H.H. Yang, Microstructure and Property of the Ti-24Al-15Nb-1.5Mo/TC11 Joint Welded by Electron Beam Welding, Int. J. Min Met. Mater., 2009, 16, p 568–575

    Article  Google Scholar 

  20. Z.L. Lei, Z.J. Dong, Y.B. Chen, J. Zhang, and R.C. Zhu, Microstructure and Tensile Properties of Laser Beam Welded Ti-22Al-27Nb Alloys, Mater. Des., 2013, 46, p 151–156

    Article  Google Scholar 

  21. C. Qin, Z.K. Yao, Y.Z. Li, Y.Q. Ning, and H.Z. Guo, Effect of Hot Working on Microstructure and Mechanical Properties of TC11/Ti2AlNb Dual-Alloy Joint Welded by Electron Beam Welding Process, Trans. Nonferrous Met. Soc. China, 2014, 24, p 3500–3508

    Article  Google Scholar 

  22. K.Z. Zhang, M. Liu, Z.L. Lei, and Y.B. Chen, Microstructure Evolution and Tensile Properties of Laser-TIG Hybrid Welds of Ti2AlNb-Based Titanium Aluminide, J. Mater. Eng. Perform., 2014, 23, p 3778–3785

    Article  Google Scholar 

  23. Q.J. Sun and G.C. Wang, Microstructure and Superplasticity of TA15 Alloy, Mater. Sci. Eng. A, 2014, 606, p 401–408

    Article  Google Scholar 

  24. J.C. Feng, H.Q. Wu, J.S. He, and B.G. Zhang, Microstructure Evolution of Electron Beam Welded Ti3Al-Nb Joint, Mater. Charact., 2005, 54, p 99–105

    Article  Google Scholar 

  25. H.Q. Wu, J.C. Feng, J.S. He, and B.G. Zhang, Microstructure Evolution of High Nb Containing Ti3AI, Based Alloy Electron Beam Welding Joints, Chin. J. Nonferr. Met., 2004, 14, p 1313–1317

    Google Scholar 

  26. S. Kou, Welding Metallurgy, Wiley, New York, 1987

    Google Scholar 

  27. F. Tang, S. Nakazawa, and M. Hagiwara, The Effect of Quaternary Additions on the Microstructures and Mechanical Properties of Orthorhombic Ti2AlNb-based Alloys, Mater. Sci. Eng. A, 2002, 329, p 492–498

    Article  Google Scholar 

  28. R. Strychor, J.C. Williams, and W.A. Soffa, Phase Transformations and Modulated Microstructures in Ti-Al-Nb Alloys, Metall. Mater. Trans. A, 1988, 19, p 225–234

    Article  Google Scholar 

  29. K. Muraleedharan, A.K. Gogia, T.K. Nandy, D. Banerjee, and S. Lele, Transformations in a Ti-24Al-15Nb Alloy: Part I, Phase Equilibria and Microstructure, Metall. Mater. Trans. A, 1992, 23A, p 401–415

    Article  Google Scholar 

  30. J.W. Zhang, S.Q. Li, D.X. Zou, W.Q. Ma, and Z.Y. Zhong, Processing and Microstructure Control of (α2 + B2 + O) Alloy Sheet in Ti–Al–Nb System, Intermetallics, 2000, 8, p 699–702

    Article  Google Scholar 

  31. G.M. Reddy, T. Mohandas, and K. Chandreshekar, Observations on Welding of alpha(2) + O+beta Titanium Aluminide, Sci. Technol. Weld. Join., 2001, 6, p 300–304

    Article  Google Scholar 

  32. C.J. Boehlert, B.S. Majumdar, V. Seetharaman, and D.B. Miracle, The Microstructural Evolution in Ti-Al-Nb O + BCC Orthorhombic Alloys, Metall. Mater. Trans. A, 1999, 30, p 2305–2323

    Article  Google Scholar 

  33. G.S. Martin, C.E. Albright, and T.A. Jones, Evaluation of CO2 Laser Beam Welding on a Ti3Al-Nb Alloy, Weld. J., 1995, 74, p 77–82

    Google Scholar 

  34. J. dos Santos, G. Çam, F. Torster, A. Insfran, S. Riekehr, V. Ventzke, and M. Koçak, Properties of Power Beam Welded Steels, Al- and Ti-Alloys: Significance of Strength Mismatch, Weld. World, 2000, 44, p 42–64

    Google Scholar 

  35. B.G. Zhang, M.X. Shi, G.Q. Chen, and J.C. Feng, Microstructure and Defect of Titanium Alloy Electron Beam Deep Penetration Welded Joint, Trans. Nonferrous Met. Soc. China, 2012, 22, p 2633–2637

    Article  Google Scholar 

  36. J. Kumpfert and W.A. Kaysser, Orthorhombic Titanium Aluminides: Phases, Phase Transformations and Microstructure Evolution, Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 2001, 92, p 128–134

    Google Scholar 

  37. W. Lu, Y.W. Shi, Y.P. Lei, and X.Y. Li, Effect of Electron Beam Welding on the Microstructures and Mechanical Properties of Thick TC4-DT Alloy, Mater. Des., 2012, 34, p 509–515

    Article  Google Scholar 

  38. J. Kumpfert, Intermetallic Alloys Based on Orthorhombic Titanium Aluminide, Adv. Eng. Mater., 2001, 3, p 851–864

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the support of Beijing Hangxing Technology Development Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junqi Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Hu, S., Shen, J. et al. Microstructure and Mechanical Properties of Laser-Welded Joints of Ti-22Al-25Nb/TA15 Dissimilar Titanium Alloys. J. of Materi Eng and Perform 25, 1880–1888 (2016). https://doi.org/10.1007/s11665-016-2025-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2025-4

Keywords

Navigation