Skip to main content
Log in

Arrhenius-Type Constitutive Model for High Temperature Flow Stress in a Nickel-Based Corrosion-Resistant Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot deformation behavior of Nickel-based corrosion-resistant alloy (N08028) was studied in compression tests conducted in the temperature range of 1050-1200 °C and the strain rate range of 0.001-1 s−1. The flow stress behavior and microstructural evolution were observed during the hot deformation process. The results show that the flow stress increases with deformation temperature decreasing and strain rate increasing, and that the deformation activation energy (Q) is not a constant but increases with strain rate increasing at a given strain, which is closely related with dislocation movement. On this basis, a revised strain-dependent hyperbolic sine constitutive model was established, which considered that the “material constants” in the original model vary as functions of the strain and strain rate. The flow curves of N08028 alloy predicted by the proposed model are in good agreement with the experimental results, which indicates that the revised constitutive model can estimate precisely the flow curves of N08028 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.Y. Sun, G. Liu, Q.D. Zhang, R. Li, and L.L. Wang, Determination of Hot Deformation Behavior and Processing Maps of IN 028 Alloy Using Isothermal Hot Compression Test, Mater. Sci. Eng. A, 2014, 595, p 92–98

    Article  Google Scholar 

  2. A. Mirzaei, A. Zariei-Hanzaki, N. Haghdadi, and A. Marandi, Constitutive Description of High Temperature Flow Behavior of Sanicro-28 Super-Anstenitic Stainless Steel, Mater. Sci. Eng. A, 2014, 589, p 76–82

    Article  Google Scholar 

  3. L. Wang, F. Liu, Q. Zuo, and C.F. Chen, Prediction of Flow Stress for N08028 Alloy Under Hot Working Conditions, Mater. Des., 2013, 47, p 737–745

    Article  Google Scholar 

  4. L. Wang, F. Liu, J.J. Chen, Q. Zuo, and C.F. Chen, Hot Deformation Characteristics and Processing Map Analysis for Nickel-Based Corrosion Resistant Alloy, J. Alloys Compd., 2015, 623, p 69–78

    Article  Google Scholar 

  5. S.I. Kim and Y.C. Yoo, Dynamic Recrystallization Behavior of AISI, 304 Stainless Steel, Mater. Sci. Eng. A, 2001, 311, p 108–113

    Article  Google Scholar 

  6. R. Ebrahimi, S.H. Zahiri, and A. Najafizadeh, Mathematical Modelling of the Stress-Strain Curves of Ti-IF Steel at High Temperature, J. Mater. Process. Technol., 2006, 171, p 301–305

    Article  Google Scholar 

  7. Y.C. Lin, M.S. Chen, and J. Zhong, Effect of Temperature and Strain Rate on the Compressive Deformation Behavior of 42CrMo Steel, J. Mater. Process. Technol., 2008, 205, p 308–315

    Article  Google Scholar 

  8. Y.C. Lin, M.S. Chen, and J. Zhong, Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate, Mech. Res. Commun., 2008, 35, p 142–150

    Article  Google Scholar 

  9. Y.C. Lin, M.S. Chen, and J. Zhong, Numerical Simulation for Stress/Strain Distribution and Microstructural Evolution in 42CrMo Steel During Hot Upsetting Process, Comput. Mater. Sci., 2008, 43, p 1117–1122

    Article  Google Scholar 

  10. J.M. Cabrera, A.A.L. Omar, J.J. Jonas, and J.M. Prado, Modeling the Flow Behavior of a Medium Carbon Microalloyed Steel Under Hot Working Conditions, Metall. Mater. Trans. A, 1997, 28, p 2233–2244

    Article  Google Scholar 

  11. N. Cabansa, N. Akdut, J. Penning, and B.C. DeConnman, High-Temperature Deformation Properties of Austenitic Fe-Mn Alloys, Metall. Mater. Trans. A, 2006, 37, p 3305–3315

    Article  Google Scholar 

  12. A. Momeni, K. Dehghani, G.R. Ebrahimi, and H. Keshmiri, Modeling the Flow Curve Characteristics of 410 Martensitic Stainless Steel Under Hot Working Condition, Metall. Mater. Trans. A, 2010, 4, p 2898–2904

    Article  Google Scholar 

  13. A. Momeni and K. Dehghani, Prediction of Dynamic Recrystallization Kinetics and Grain Size for 410 Martensitic Stainless Steel During Hot Deformation, Met. Mater. Int., 2010, 16, p 843–849

    Article  Google Scholar 

  14. A. Momeni, K. Dehghani, M. Heidari, and M. Vaseghi, Modeling the Flow Curve of AISI, 410 Martensitic Stainless Steel, J. Mater. Eng. Perform., 2012, 21, p 2238–2243

    Article  Google Scholar 

  15. U. Kivisakk, A Test Method for Dewpoint Corrosion of Stainless Steels in Dilute Hydrochloric Acid, Corros. Sci., 2003, 45, p 485–495

    Article  Google Scholar 

  16. L. Zhang, J.A. Szpunar, R.W. Basu, J.X. Dong, and M.C. Zhang, Influence of Cold Deformation on the Corrosion Behavior of Ni-Fe-Cr alloy 028, J. Alloys Compd., 2014, 616, p 235–242

    Article  Google Scholar 

  17. C.M. Sellars and W.J. Mc, Tegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138

    Article  Google Scholar 

  18. F.A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, Constitutive Analysis of Wrought Magnesium Alloy Mg-Al4-Zn1, Scr. Mater., 2007, 57, p 759–762

    Article  Google Scholar 

  19. D.H. Yu, Modeling High-Temperature Tensile Deformation Behavior of AZ31B Magnesium Alloy Considering Strain Effects, Mater. Des., 2013, 51, p 323–330

    Article  Google Scholar 

  20. C.H. Liao, H.Y. Wu, S. Lee, F.J. Zhu, H.C. Liu, and C.T. Wu, Strain-Dependent Constitutive Analysis of Extruded AZ61Mg Alloy Under Hot Compression, Mater. Sci. Eng. A, 2011, 528, p 4774–4782

    Article  Google Scholar 

  21. Y.H. Li, D.D. Wei, J.D. Hu, Y.H. Li, and S.L. Chen, Constitutive Model for Hot Deformation Behavior if T24 Ferritic Steel, Comput. Mater. Sci., 2012, 53, p 425–430

    Article  Google Scholar 

  22. D. Samatary, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High Temperature Flow Stress in Modified 9Cr-1Mo Steel, Mater. Des., 2010, 31, p 981–984

    Article  Google Scholar 

  23. H. Dehghan, S.M. Abbasi, A. Momeni, and A. Karimi-Taheri, On the Constitutive Modeling and Microstructural Evolution of Hot Compressed A286 Iron-Base Superalloy, J. Alloys Compd., 2013, 564, p 13–19

    Article  Google Scholar 

  24. Y.C. Lin, D.X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High-Temperature Flow Behavior of a Ni-Based Superalloy, Mater. Des., 2014, 59, p 115–123

    Article  Google Scholar 

  25. Y.C. Lin, X.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Compos. Mater. Sci., 2008, 42, p 470–477

    Article  Google Scholar 

  26. S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress in a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 500, p 114–121

    Article  Google Scholar 

  27. X.N. Peng, H.Z. Guo, and A.F. Shi, C, Qin and Z.L. Zhao, Constitutive Equations for High Temperature Flow Stress of TC4-DT Alloy Incorporating Strain, Strain Rate and Temperature, Mater. Des., 2013, 50, p 198–206

    Article  Google Scholar 

  28. D.G. Cram, H.S. Zurob, Y.J.M. Brechet, and C.R. Hutchinson, Modelling Discontinuous Dynamic Recrystallization Using a Physically Based Model for Nucleation, Acta Mater., 2009, 57, p 5218–5228

    Article  Google Scholar 

  29. P. Bernard, S. Bag, K. Huang, and R.E. Loge, A Two-Site Mean Field Model of Discontinuous Dynamic Recrystallization, Mater. Sci. Eng. A, 2011, 528, p 7357–7367

    Article  Google Scholar 

  30. P.J. Zerilli and R.W. Armstring, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamic Calculations, J. Appl. Mech., 1941, 8, p 77–91

    Google Scholar 

  31. S. Malinov and W. Sha, Application of Artificial Neural Networks for Modelling Correlations in Titanium Alloys, Mater. Sci. Eng. A, 2004, 365, p 202–211

    Article  Google Scholar 

  32. S. Mandal, P.V. Sivaprasad, and S. Venugopal, Capability of a Feed-Forward Artificial Neural Network to Predict the Constitutive Flow Behavior of As Cast 304 Stainless Steel Under Hot Deformation, J. Eng. Mater. Technol., 2007, 129, p 242–247

    Article  Google Scholar 

  33. G.Z. Quan, W.Q. Lv, Y.P. Mao, Y.W. Zhang, and J. Zhou, Prediction of Flow Stress in a Wide Temperature Range Involving Phase Transformation for As-Cast Ti–6Al–2Zr–1Mo–1 V Alloy by Artificial Neural Network, Mater. Des., 2013, 50, p 51–61

    Article  Google Scholar 

  34. G. Ji, F. Li, Q. Li, H. Li, and Z. Li, Prediction of the Hot Deformation Behavior for Aermet100 Steel Using an Artificial Neural Network, Comp. Mater. Sci., 2010, 48, p 626–632

    Article  Google Scholar 

  35. B. Li, Q. Pan, and Z. Yin, Microstructural Evolution and Constitutive Relationship of Al-Zn-Mg Alloy Containing Small Amount of Sc and Zr During Hot Deformation Based on Arrhenius-type and Artificial Neural Network Models, J. Alloys Compd., 2014, 584, p 406–416

    Article  Google Scholar 

  36. Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759

    Article  Google Scholar 

  37. H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63

    Article  Google Scholar 

  38. C.G. Shastry, P. Parameswaran, M.D. Mathew, K. Bhanu, S. Rao, and S.L. Mannan, The Effect of Strain Rate and Temperature on the Elevated Temperature Tensile Flow Behavior of Service-Exposed 2.25Cr-1Mo Steel, Mater. Sci. Eng. A, 2007, 465, p 109–115

    Article  Google Scholar 

  39. D.X. Wen, Y.C. Lin, J. Chen, X.M. Chen, J.L. Zhang, and Y.J. Liang, Work-Hardening Behaviors of Typical Solution-Treated and Aged Ni-Based Superalloys During Hot Deformation, J. Alloys Compd., 2015, 618, p 372–379

    Article  Google Scholar 

  40. P. Wanjara, M. Jahazi, H. Monajati, S. Yue, and J.P. Immarigeon, Hot working Behavior of Near-α Alloy IMI834, Mater. Sci. Eng. A, 2005, 396, p 50–60

    Article  Google Scholar 

  41. Y.H. Liu, Z.K. Yao, Y.Q. Ning, Y. Nan, and H.Z. Guo, The Flow Behavior and Constitutive Equation in Isothermal Compression of FGH4096-GH4133B Dual Alloy, Mater. Des., 2014, 63, p 829–837

    Article  Google Scholar 

  42. Z.N. Yang, F.C. Zhang, L. Qu, Z.G. Yan, Y.Y. Xiao, R.P. Liu, and X.Y. Zhang, Formation of Duplex Microstructure in Zr–2.3Nb Alloy and Its Plastic Behaviour at Various Strain Rates, Int. J. Plast., 2013, 54, p 163–177

    Article  Google Scholar 

  43. ASTM E209, Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates. Annual Book of ASTM Standard, ASTM International, West Conshohocken, 2010

  44. Y.Q. Cheng, H. Zhang, Z.H. Chen, and K.F. Xian, Flow Stress Equation of AZ31 Magnesium Alloy Sheet During Warm Tensile Deformation, J. Mater. Eng. Perform., 2008, 208, p 29–34

    Google Scholar 

  45. D. Samantaray, S. Mandal, and A.K. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uni-axial Compression Testing, Mater. Des., 2011, 32, p 2797–2802

    Article  Google Scholar 

  46. S. Mandal, M. Jayalakshmi, A.K. Bhaduri, and V.S. Sarma, Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L(N), Metall. Mater. Trans. A, 2014, 45, p 5646–5656

    Article  Google Scholar 

  47. C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32

    Article  Google Scholar 

  48. H. Mirazdeh, J.M. Cabrera, and A. Najafizadeh, Consitutive Relationships for Hot Deformation of Austenite, Acta Mater., 2011, 59, p 6441–6448

    Article  Google Scholar 

  49. M.E. Wahabi, J.M. Cabrera, and J.M. Prado, Hot Working of Two AISI, 304 Steels: A Comparative Study, Mater. Sci. Eng. A, 2003, 343, p 116–125

    Article  Google Scholar 

  50. M. Aghaie-Khafri and F. Adhami, Hot Deformation of 15-5 PH Stainless Steel, Mater. Sci. Eng. A, 2010, 527, p 1052–1057

    Article  Google Scholar 

  51. E.X. Pu, W.J. Zheng, J.Z. Xiang, Z.G. Song, and J. Li, Hot Deformation Characteristics and Processing Map Analysis of Superaustenitic Stainless Steel S32654, Mater. Sci. Eng. A, 2014, 598, p 174–182

    Article  Google Scholar 

  52. W.S. Lee and C.Y. Liu, The Effects of Temperature and Strain Rate on the Dynamic Flow Behavior of Different Steels, Mater. Sci. Eng. A, 2006, 426, p 101–113

    Article  Google Scholar 

  53. S. Srinivasulu and A. Jain, A Comparative Analysis of Training Methods for Artificial Neural Network Rainfall-Runoff Models, Appl. Soft Comput., 2006, 6, p 295–306

    Article  Google Scholar 

  54. P. Zhang, C. Hua, Q. Zhu, C.Q. Ding, and H.Y. Qin, Hot Compression Deformation and Constitutive Modeling of GH4698 alloy, Mater. Des., 2015, 62, p 1153–1160

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support of the National Basic Research Program of China (973 Program, No. 2011CB610403), the Natural Science Foundation of China (Nos. 51134011 and 51431008), the China National Funds for Distinguished Young Scientists (No. 51125002), and the Fundamental Research Fund of Northwestern Polytechnical University (No. JC20120223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, F., Cheng, J.J. et al. Arrhenius-Type Constitutive Model for High Temperature Flow Stress in a Nickel-Based Corrosion-Resistant Alloy. J. of Materi Eng and Perform 25, 1394–1406 (2016). https://doi.org/10.1007/s11665-016-1986-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1986-7

Keywords

Navigation