Journal of Materials Engineering and Performance

, Volume 25, Issue 3, pp 1163–1171 | Cite as

Friction Stir Welding of a Thick Al-Zn-Mg Alloy Plate

  • V. Buchibabu
  • G. M. Reddy
  • D. Kulkarni
  • A. De


Al-Zn-Mg alloys are widely used as structural materials due to high strength-to-weight ratio and impact toughness. As fusion welds in these alloys commonly face hot cracking and macro porosity, friction stir welding is increasingly becoming the preferred recourse. We report here a detailed experimental study on friction stir welding of a specific Al-Zn-Mg alloy with its chemical compositions close to AA7039. The effect of tool rotational speed and welding speed on the weld profile, joint microstructure, and mechanical properties is studied extensively. The results show sound weld profiles and joint properties within the selected range of process conditions. Within the selected range of welding conditions, the welds made at a tool rotational speed of 350 rpm and welding speed of 3 mm/s have showed joint structure, tensile, and impact toughness properties fairly close to that of the base material.


aluminum alloy friction stir welding hardness joint strength toughness 


  1. 1.
    B. Thomson, K. Doherty, C. Niese, M. Eff, T. Stotler, Z. Pramann, J. Seaman, R. Spencer and W. Perry, Friction stir welding of thick section aluminum for military vehicle applications, available at: (accessed online 16 June 2015)
  2. 2.
    G. Çam and S. Mistikoglu, Recent Developments in Friction Stir Welding of Al-alloys, J. Mater. Eng. Perform., 2014, 23(6), p 1936–1952CrossRefGoogle Scholar
  3. 3.
    R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties, Prog. Mater. Sci., 2008, 53(6), p 980–1023CrossRefGoogle Scholar
  4. 4.
    J.W. Bray, ASM Handbook, Properties and Selection: Non-ferrous Alloys and Special Purposes Materials, Vol 2, ASTM International, Materials Park, 1990, p 431–435Google Scholar
  5. 5.
    V. Balasubramanian and A.K. Lakshminarayanan, The Mechanical Properties of the GMAW, GTAW and FSW Joints of the RDE-40 Aluminium Alloy, Int. J. Microstruct. Mater. Prop., 2008, 3(6), p 837–852Google Scholar
  6. 6.
    A.K. Lakshminarayanan and V. Balasubramanian, Process Parameter Optimization for Friction Stir Welding of RDE-40 Aluminum Alloy Using Taguchi Technique, Trans. Nonferrous Met. Soc. China, 2008, 18(3), p 548–554CrossRefGoogle Scholar
  7. 7.
    G.M. Reddy, A.A. Gokhale, K.S. Prasad, and K.P. Rao, Chill Zone Formation in Al–Li Alloy Welds, Sci. Technol. Weld. Join., 1998, 3(4), p 208–212CrossRefGoogle Scholar
  8. 8.
    G.D. Janaki Ram, R. Murugesan, and S. Sundaresan, Fusion Zone Grain Refinement in Aluminum Alloy Welds Through Magnetic Arc Oscillation and Its Effect on Tensile Behavior, Int. J. Mater. Eng. Process., 1999, 8(5), p 513–520Google Scholar
  9. 9.
    D.A. Shelwatkar, G.M. Reddy, and A.A. Gokhale, Gas Tungsten Arc Welding Studies on Similar and Dissimilar Combinations of Al-Zn-Mg alloy RDE 40 and Al-Li Alloy 1441, Sci. Technol. Weld. Join., 2002, 7(6), p 352–361CrossRefGoogle Scholar
  10. 10.
    S. Dev, B.S. Murty, and K.P. Rao, Effects of Base and Filler Chemistry and Weld Techniques on Equiaxed Zone Formation in Al–Zn–Mg Alloy Welds, Sci. Technol. Weld. Join., 2008, 13(7), p 598–606CrossRefGoogle Scholar
  11. 11.
    X. Lei, Y. Deng, Y. Peng, Z. Yin, and G. Xu, Microstructure and Properties of TIG/FSW Welded Joints of a New Al-Zn-Mg-Sc-Zr Alloy, J. Mater. Eng. Perform., 2013, 22(9), p 2723–2729CrossRefGoogle Scholar
  12. 12.
    P. Kumar, C.A. Anoop, and S. Kumar, Study of Heat Input for GTA Welded Aluminium Alloy 7039, Int. J. Eng. Res. Dev., 2013, 2(5), p 150–156Google Scholar
  13. 13.
    S.C. Wu, X. Yu, R.Z. Zuo, W.H. Zhang, H.L. Xie, and J.Z. Jiang, Porosity, Element Loss and Strength Model on Softening Behaviour of Hybrid Laser Arc Welded Al-Zn-Mg-Cu ALLOY with Synchrotron Radiation Analysis, Weld. J., 2013, 92(2), p 64–71Google Scholar
  14. 14.
    C.M. Allen, G. Verhaeghe, P.A. Hilton, C.P. Heason, and P.B. Pragnell, Laser and Hybrid Laser-MIG Welding of 6.35 and 12.7 mm Thick Aluminium Aerospace Alloy, Mater. Sci. Forum, 2006, 519–521(1), p 1139–1144CrossRefGoogle Scholar
  15. 15.
    C. Sharma, D.K. Dwivedi, and P. Kumar, Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Joints of AA7039 Aluminum Alloy, Mater. Des., 2012, 36(1), p 379–390CrossRefGoogle Scholar
  16. 16.
    D. Venkateswarlu, A.K. Mandal, M.M. Mahapatra, and S.P. Harsh, Tool Design Effects for FSW of AA7039, Weld. J., 2013, 92(2), p 41–47Google Scholar
  17. 17.
    A.S. Golzani, R.V. Barenji, A. Heidarzadeh, and H. Pouraliakbar, Elucidating of Tool Rotational Speed in Friction Stir Welding of 7020-T6 Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2015, doi: 10.1007/s00170-015-7252-6 Google Scholar
  18. 18.
    K.A.A. Hassan, P.B. Prangnell, A.F. Norman, D.A. Price, and S.W. Williams, Effect of Welding Parameters on Nugget Zone Microstructure and Properties in High Strength Aluminium Alloy Friction Stir Welds, Sci. Technol. Weld. Joining, 2003, 8(4), p 257–268CrossRefGoogle Scholar
  19. 19.
    X. Xu, Y. Lu, F. Zheng, and B. Chen, Microstructural Investigation of Friction-Stir-Welded 7005 Aluminum Alloy, J. Mater. Eng. Perform., 2015, doi: 10.1007/s11665-015-1764-y Google Scholar
  20. 20.
    T.S. Rao, G.M. Reddy, and S.R.K. Rao, Microstructure and Mechanical Properties of Friction Stir Welded AA7075-T651 Aluminum Alloy Thick Plates, Trans. Nonferrous Met. Soc. China, 2015, 25(1), p 1770–1778CrossRefGoogle Scholar
  21. 21.
    J. Woolman and R.A. Mottaram, The Mechanical and Physical Properties of the British Standard En Steels (B.S. 970-1955), Vol 3, Pergamon, New York, 1964, p 72–110Google Scholar
  22. 22.
    A. Arora, A. De, and T. DebRoy, Towards Optimum Friction Stir Welding Shoulder Diameter, Scripta Mater., 2011, 64, p 9–12CrossRefGoogle Scholar
  23. 23.
    W.J. Arbegast and P.J. Hartley, Friction Stir Weld Technology Development at Lockheed Martin Michoud Space Systems—An Overview, Proceedings of the 5th International Conference on Trends in Welding Research, June 15 (Pine Mountain, GA, USA), 1998, 1(1), p 541–546Google Scholar
  24. 24.
    J. Schneider, R. Beshears, and A.C. Nunes, Interfacial Sticking and Slipping in the Friction Stir Welding Process, Mater. Sci. Eng. A, 2006, 436(1–2), p 297–304CrossRefGoogle Scholar
  25. 25.
    Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki, and K. Nakata, Three Defect Types in Friction Stir Welding of Aluminum Die Casting Alloy, Mater. Sci. Eng. A, 2006, 415(1–2), p 250–254CrossRefGoogle Scholar
  26. 26.
    S. Rajakumar, C. Muralidharan, and V. Balasubramanian, Influence of Friction Stir Welding Process and Tool Parameters on Strength Properties of AA7075-T6 Aluminum Alloy Joints, Mater. Des., 2011, 32(1), p 535–549CrossRefGoogle Scholar
  27. 27.
    H. Doude, J. Schneider, B. Patton, S. Stafford, T. Waters, and C. Varner, Optimizing Weld Quality of a Friction Stir Welded Aluminum Alloy, J. Mater. Process. Technol., 2015, 222(1), p 188–196CrossRefGoogle Scholar
  28. 28.
    K. Elangovan and V. Balasubramanian, Influeces of Tool Pin Profile and Formation of Friction Stir Processing Zone in AA2219 Aluminium Alloy, J. Mater. Process. Technol., 2008, 200(1–3), p 163–175CrossRefGoogle Scholar
  29. 29.
    M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel, Properties of Friction Stir Welded 7075-T651 Aluminum, Metall. Mater. Trans. A, 1998, 29(7), p 1956–1964CrossRefGoogle Scholar
  30. 30.
    Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, and Y.T. Zhu, Microstructure and Mechanical Properties of Ultrafine Grained 7075 Al Alloy Processed by ECAP and Their Evolutions During Annealing, Acta Mater., 2004, 52(15), p 4589–4599CrossRefGoogle Scholar
  31. 31.
    K.R. Cardoso, D.N. Travessa, W.J. Botta, and A.M. Jorge, High Strength AA7050 Al Alloy Processed by ECAP: Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2011, 528(18), p 5804–5811CrossRefGoogle Scholar
  32. 32.
    H. Abd El-Hafez, Mechanical Properties and Welding Power of Friction Stirred AA2024-T35 Joints, J. Mater. Eng. Perform., 2011, 20(6), p 839–845CrossRefGoogle Scholar
  33. 33.
    K. Ramanjaneyulu, G.M. Reddy, A.V. Rao, and R. Markandeya, Structure-Property Correlation of AA2014 Friction Stir Welds: Role of Tool Pin Profile, J. Mater. Eng. Perform., 2013, 22(8), p 2224–2240Google Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • V. Buchibabu
    • 1
  • G. M. Reddy
    • 2
  • D. Kulkarni
    • 3
  • A. De
    • 1
  1. 1.Indian Institute of Technology BombayMumbaiIndia
  2. 2.Defence Metallurgical Research LaboratoryHyderabadIndia
  3. 3.Larsen& Toubro Limited, Heavy Engineering ICMumbaiIndia

Personalised recommendations