Skip to main content
Log in

Spark Plasma Sintering of MgO-Strengthened Aluminum

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of MgO as a sintering additive, sintering duration, and post-heat treatment on mechanical properties and microstructure of spark plasma-sintered aluminum powders were investigated. The sinterability of aluminum with or without MgO was found to be sensitive to the aluminum average particle size, meaning the amount of native oxide within the raw aluminum powders. The fracture mode changes gradually from a brittle mode (after short SPS), through a mixed brittle-ductile fracture mode (after long SPS), ending with the pure ductile form (short SPS followed by heat treatment). Maxima flexural strength and elongation were found in samples with particles size of about 44 μm and the addition of 2 wt.% MgO after short SPS process followed by an additional heat treatment. The addition of MgO may contribute to perforation of the aluminum native oxide and enhance aluminum diffusion during the heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Recent Development in Aluminium Alloys for the Automotive Industry, Mater. Sci. Eng., A, 2000, 280(1), p 37–49

    Article  Google Scholar 

  2. T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871

    Article  Google Scholar 

  3. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller, Recent Development in Aluminium Alloys for Aerospace Applications, Mater. Sci. Eng., A, 2000, 280(1), p 102–107

    Article  Google Scholar 

  4. G.B. Schaffer, T.B. Sercombe, and R.N. Lumley, Liquid Phase Sintering of Aluminium Alloys, Mater. Chem. Phys., 2001, 67(1-3), p 85–91

    Article  Google Scholar 

  5. A. Gokce and F. Findik, Mechanical and Physical Properties of Sintered Aluminium Powders, J. Achiev. Mater. Manuf. Eng., 2008, 30(2), p 157–164

    Google Scholar 

  6. G. Xie, O. Ohashi, T. Sato, N. Yamaguchi, M. Song, K. Mitsuishi, and K. Furuya, Effect of Mg on the Sintering of Al-Mg Alloy Powders by Pulse Electric-Current Sintering Process, Mater. Trans., 2004, 45(3), p 904–909

    Article  Google Scholar 

  7. N. Showaiter and M. Youseffi, Compaction, Sintering and Mechanical Properties of Elemental 6061 Al Powder with and Without Sintering Aids, Mater. Des., 2008, 29(4), p 752–762

    Article  Google Scholar 

  8. I.A. MacAskill, R.L. Hexemer, Jr., I.W. Donaldson, and D.P. Bishop, Effects of Magnesium, Tin and Nitrogen on the Sintering Response of Aluminum Powder, J. Mater. Process. Technol., 2010, 10(15), p 2252–2260

    Article  Google Scholar 

  9. G. Xie, O. Ohashi, M. Song, K. Mitsuishi, and K. Furuya, Reduction Mechanism of Surface Oxide Films and Characterization of Formations on Pulse Electric-Current Sintered Al-Mg Alloy Powders, App. Surf. Sci., 2005, 241(1-2), p 102–106

    Article  Google Scholar 

  10. G.Q. Xie, O. Ohashi, N. Yamaguchi, M. Song, K. Furuya, and T. Noda, TEM Observation of Interfaces Between Particles in Al-Mg Alloy Powder Compacts Prepared by Pulse Electric Current Sintering, Mater. Trans., 2002, 43(9), p 2177–2180

    Article  Google Scholar 

  11. R.N. Lumley, T.B. Sercombe, and G.B. Schaffer, Surface Oxide and the Role of Magnesium During the Sintering of Aluminum, Metall. Mater. Trans. A, 1999, 30(2), p 457–463

    Article  Google Scholar 

  12. A. Kimura, K. Kondoh, M. Shibata, and R. Watanabe, Breakaway Behavior of Surface Oxide Film on Aluminum-Silicon-Magnesium Alloy Powder Particles at High Temperature in a Vacuum, Mater. Trans., 2001, 42(7), p 1373–1379

    Article  Google Scholar 

  13. A. Kimura, M. Shibata, K. Kondoh, Y. Takeda, M. Katayama, T. Kanie, and H. Takada, Reduction Mechanism of Surface Oxide in Aluminum Alloy Powders Containing Magnesium Studied by x-ray Photoelectron Spectroscopy Using Synchrotron Radiation, Appl. Phys. Lett., 1997, 70(26), p 3615–3617

    Article  Google Scholar 

  14. R. Orru, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao, Consolidation/Synthesis of Materials by Electric Current Activated/Assisted Sintering, Mater. Sci. Eng., R, 2009, 63(4-6), p 127–287

    Article  Google Scholar 

  15. G. Xie, O. Ohashi, M. Song, K. Furuya, and T. Noda, Behavior of Oxide Film at the Interface Between Particles in Sintered Al Powders by Pulse Electric-Current Sintering, Metall. Mater. Trans. A, 2003, 34A(3), p 699–703

    Article  Google Scholar 

  16. H. Sieber, D. Hesse, X. Pan, S. Senz, and J. Heydenreich, TEM Investigations of Spinel-Forming Solid State Reactions: Reaction Mechanism, Film Orientation, and Interface Structure During MgAl2O4 Formation on MgO (001) and Al2O3 (11.2) Single Crystal Substrates, Z. Anorg. Allg. Chem., 1996, 622(10), p 1658–1666

    Article  Google Scholar 

  17. I. Rosenthal, E. Tiferet, M. Ganor, and A. Stern, Selective Laser Melting Additive Manufacturing: AlSi10 Mg Powder Characterization, Ann. Duna. Univ. Galati Fascicle XII, Weld. Equip. Technol., 2014, 25, p 35–40

    Google Scholar 

  18. M. Zadra, F. Casari, L. Girardini, and A. Molinari, Spark Plasma Sintering of Pure Aluminium Powder: Mechanical Properties and Fracture Analysis, Powder Metall., 2007, 50(1), p 40–45

    Article  Google Scholar 

  19. X.P. Li, M. Yan, H. Imai, K. Kondoh, G.B. Schaffer, and M. Qian, The Critical Role of Heating Rate in Enabling the Removal of Surface Oxide Films During Spark Plasma Sintering of Al-Based Bulk Metallic Glass Powder, J. Non-Cryst. Sol., 2013, 375(1-2), p 95–98

    Article  Google Scholar 

  20. M.A. Trunov, M. Schoenitz, X. Zhu, and E.L. Dreizin, Effect of Polymorphic Phase Transformations in Al2O3 Film on Oxidation Kinetics of Aluminum Powders, Combust. Flame, 2005, 140(4), p 310–318

    Article  Google Scholar 

  21. M. Omori, Sintering, Consolidation, Reaction and Crystal Growth by the Spark Plasma System (SPS), Mater. Sci. Eng., A, 2000, 287(2), p 183–188

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the Pazy Foundation (grant 249/15) and the FP7-PEOPLE-2012-CIG (Grant 321838-EEEF-GBE-CNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hayun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-Haroush, M., Dikovsky, G., Kalabukhov, S. et al. Spark Plasma Sintering of MgO-Strengthened Aluminum. J. of Materi Eng and Perform 25, 648–655 (2016). https://doi.org/10.1007/s11665-015-1866-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1866-6

Keywords

Navigation