Journal of Materials Engineering and Performance

, Volume 25, Issue 2, pp 421–430 | Cite as

High-Temperature Corrosion Behavior of Different Regions of Weldment of 2.25Cr-1Mo Steel in SO2 + O2 Atmosphere

Article
  • 144 Downloads

Abstract

This paper investigates the corrosion behavior of different regions of weldment of 2.25Cr-1Mo steel exposed in mixed oxidation and sulfidation (SO2 + O2) environment up to 500 h at 773 K. Microstructural investigation and characterization of oxide scales are done using SEM, TEM, and XRD. The obtained results infer that heat-affected zone corrodes faster than both base and weld metal. The reaction kinetics follows a parabolic growth rate for all regions. The higher corrosion rate of heat-affected zone is attributed to the formation of Cr23C6 secondary precipitates leading to depletion of protective inner scale of the Cr-rich oxide during welding.

Keywords

corrosion: welding oxidation steel 

References

  1. 1.
    A.K. Khare, Ferritic Steels at High Temperature Applications, ASM International Conferences, Warrandale, PA, Cleaveland OH, 1981Google Scholar
  2. 2.
    S. F Pugh and E.A. Little, Proceedings of BNES International Conference on Ferritic Steel for Fast Reactor Steam Generators, London, BWES, 1978Google Scholar
  3. 3.
    R. Viswanathan, Damage Mechanism and Life Assessment of High Temperature Components, ASM International, Ohio, 1989Google Scholar
  4. 4.
    K. Easterling, Introduction to Physical Metallurgy of Welding, Butterworths, 1983.Google Scholar
  5. 5.
    V.M. Radhakrishnan, Welding Technology and Design, New Age International Private Limited, New Delhi, 2005Google Scholar
  6. 6.
    P. Roy and T. Lauritzen, Testing of Welded 2.25CrMo Steel in Hot High Pressure Hydrogen, Weld. J. Res., 1986, 65, p 45–47Google Scholar
  7. 7.
    C.D. Ludin, Advances in welding Science and Technology, Conference Proceedings, S.A David, Ed., ASM International, Metals Park, OH, 1988Google Scholar
  8. 8.
    A. Phongphiphat, C. Ryu, Y.B. Yang, K.N. Finney, A. Leyland, V.N. Sharifi, and J. Swithenbank, Investigation into High-Temperature Corrosion in a Large-Scale Municipal Waste-to-Energy Plant, Corros. Sci., 2010, 52, p 3861–3874CrossRefGoogle Scholar
  9. 9.
    Q. Zhao, Z. Zhang, D. Cheng, Y. Wang, and X. Deng, High Temperature Corrosion of Waterwall Materials T23 and T24 in Simulated Furnace Atmospheres, Chin. J. Chem. Eng., 2012, 20, p 814–822CrossRefGoogle Scholar
  10. 10.
    A. Al Mazrouee, R.N. Ibrahim, and R.K. Singh Raman, Effect of High Temperature Oxidation of Creep Life Prediction of Cr-Mo Components, ECCC Creep Conference, London 12-14 September, 2005Google Scholar
  11. 11.
    R.K. Singh Raman and J.B. Gnanamoorthy, The Oxidation Behaviour of the Weld Metal, Heat Affected Zone and Base Metal in the Weldments of 2.25Cr-1Mo Steel, Corros. Sci., 1993, 34(8), p 1275–1288CrossRefGoogle Scholar
  12. 12.
    R.K. Singh Raman, Relevance of High temperature Oxidation in Life Assessment and Microstructural Degradation of Cr-Mo Steel Weldments, Metall. Mater. Trans. A, 2000, 31, p 3101–3108CrossRefGoogle Scholar
  13. 13.
    K. Laha, K.B.S. Rao, and S.L. Mannan, Creep Behaviour of Post Weld Heat Treated 2.25 Cr-1 Mo Ferritic Steel Base, Weld Metal and Weldments, Mater. Sci. Eng. A, 1990, 129, p 183–195CrossRefGoogle Scholar
  14. 14.
    C.D. Ludin, S.C. Kelly, R. Menon, and B.J. Vruise, Stress rupture Behaviour of Post Weld Heat Treated 2.25 Cr-1 Mo Steel Weld Metal, Weld. Res. Counc. Bull., 1984, 315, p 1–66Google Scholar
  15. 15.
    ASME Boiler and Pressure Vessel Code, Code Case No N-47, 1986Google Scholar
  16. 16.
    V. Vasantashree and M.G. Hocking, Hot Corrosion of Ni-Cr Alloys in SO2 + O2 Atmosphere-I: Corrosion Kinetics, Corros. Sci., 1976, 16, p 261–268CrossRefGoogle Scholar
  17. 17.
    P. Kofstad and G. Akkeson, Sulfate-Induced High Temperature Corrosion of Nickel, Oxid. Met., 1980, 14, p 301–323CrossRefGoogle Scholar
  18. 18.
    M. Seierstein and P. Kofstad, The High Temperature Corrosion of Nickel in SO2 at 500-800°C, Corros. Sci., 1982, 22, p 487–506CrossRefGoogle Scholar
  19. 19.
    M.R. Wooton and N. Birks, The Oxidation of Nickel in Atmosphere Containing Sulphur Dioxide, Corros. Sci., 1972, 12, p 829–836CrossRefGoogle Scholar
  20. 20.
    P. Hancock, Proceedings of 1 st International Congress on Metallic Corrosion, Butterworths, London, 1962, p. 193Google Scholar
  21. 21.
    B. Gleeson, Alloy Degradation Under Oxidizing-Sulfidizing Conditions at Elevated Temperature, Material Research, 2004, 7, p 61–69CrossRefGoogle Scholar
  22. 22.
    M.G. Hocking and V. Vasantshree, Hot Corrosion of Ni- Cr Alloys in SO2/O2 Atmosphere-II. Visual Observations, Analyses and Mechanism, Corros. Sci., 1976, 16, p 279–286CrossRefGoogle Scholar
  23. 23.
    P.S. Sidky and M.G. Hocking, International Conference on the Behaviour of High Temperature Alloys in Aggressive Environments, Petten, 1979Google Scholar
  24. 24.
    A. Andersen and P. Kofstad, Proceedings of 3 rd JIM international Symposium., Suppl to Trans. Japan Inst, 1983, 24:499Google Scholar
  25. 25.
    P. Kofstad, High Temperature Corrosion, Elsevier Applied Science, 1988Google Scholar
  26. 26.
    B. Halflan and P. Kofstad, The Reaction of Nickel with SO2 + O2/SO3, Corros. Sci., 1983, 23, p 1333–1352CrossRefGoogle Scholar
  27. 27.
    D. Ghosh and S.K. Mitra, Influence of Alloy Grain Size on High Temperature Corrosion Behavior of 2.25 Cr-1 Mo Steel in SO2 + O2 Atmosphere, High Temp. Mater. Process., 2012, 30, p 727–731Google Scholar
  28. 28.
    D. Ghosh and S.K. Mitra, High Temperature Corrosion Behavior In Different regions of 9Cr-1 Mo steel Weldment in SO2 + O2 atmosphere, J. Mater. Eng. Perform., 2014, 23, p 1703–1710CrossRefGoogle Scholar
  29. 29.
    D. Ghosh, H. Roy, and A.K. Shukla, High Temperature Corrosion Failure of a Secondary Superheater Tube in Thermal Power Plant Boiler, High Temp. Mater. Process., 2010, 28, p 109–114Google Scholar
  30. 30.
    D. Ghosh and S.K. Mitra, High Temperature Corrosion Problem of Boiler Components in Presence of Sulfur and Alkali Based Fuels, High Temp. Mater. Process., 2011, 1–2, p 81–85Google Scholar
  31. 31.
    J. Pilling and N. Ridley, Tempering of 2.25 pct Cr-1 pct Mo Low Carbon Steel, Metall. Trans. A, 1982, 13A, p 557–563CrossRefGoogle Scholar
  32. 32.
    N. Gope, A. Chatterjee, T. Mukherjee, and D.S. Sharma, Influence of Long term aging and superimposed creep stress on the microstructure of 2.25 Cr-1 Mo steel, Metall. Trans. A, 1993, 24A, p 315–326CrossRefGoogle Scholar
  33. 33.
    R. Baker and J. Nutting, The Tempering of 2.25 Cr-1 Mo Steel After Quenching and Normalizing, J. Iron steel Inst., 1959, 192, p 257–268Google Scholar
  34. 34.
    E. Otero, A. Pardo, F.J. Perosanz, and A. Parra, C.A Kaffiotte, Coating Protection of Several Steels After the Exposure at High Temperature to Oxygen and Sulphur Mixtures, Surf. Coat. Technol., 1996, 87, p 61–69Google Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • D. Ghosh
    • 1
  • A. K. Shukla
    • 1
  • S. K. Mitra
    • 2
  • B. Satpati
    • 3
  1. 1.NDT & Metallurgy Group, Central Mechanical Engineering Research Institute (CMERI)DurgapurIndia
  2. 2.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyDurgapurIndia
  3. 3.Saha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations