Skip to main content
Log in

Multi-length-scale Material Model for SiC/SiC Ceramic-Matrix Composites (CMCs): Inclusion of In-Service Environmental Effects

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In our recent work, a multi-length-scale room-temperature material model for SiC/SiC ceramic-matrix composites (CMCs) was derived and parameterized. The model was subsequently linked with a finite-element solver so that it could be used in a general room-temperature, structural/damage analysis of gas-turbine engine CMC components. Due to its multi-length-scale character, the material model enabled inclusion of the effects of fiber/tow (e.g., the volume fraction, size, and properties of the fibers; fiber-coating material/thickness; decohesion properties of the coating/matrix interfaces; etc.) and ply/lamina (e.g., the 0°/90° cross-ply versus plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. One of the major limitations of the model is that it applies to the CMCs in their as-fabricated conditions (i.e., the effect of prolonged in-service environmental exposure and the associated material aging-degradation is not accounted for). In the present work, the model is upgraded to include such in-service environmental-exposure effects. To demonstrate the utility of the upgraded material model, it is used within a finite-element structural/failure analysis involving impact of a toboggan-shaped turbine shroud segment by a foreign object. The results obtained clearly revealed the effects that different aspects of the in-service environmental exposure have on the material degradation and the extent of damage suffered by the impacted CMC toboggan-shaped shroud segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Grujicic, J.S. Snipes, R. Galgalikar, R. Yavari, V. Avuthu, and S. Ramaswami, Multi-Length-Scale Derivation of the Room-Temperature Material Constitutive Model for SiC/SiC Ceramic-Matrix Composites (CMCs), J. Mater. Des. Appl., 2015, doi:10.1177/1464420715600002

    Google Scholar 

  2. K. Luthra, Melt Infiltrated SiC/SiC Ceramic Composites for Industrial Gas Turbines and Aircraft Engines, GE Global Research, Niskayuna, 2014. Technical Report 2014GRC125.

  3. R. Bodet, N. Jia, and R.E. Tressler, Microstructural Instability and Resultant Strength of Si-C-O (Nicalon) and Si-N-C-O (HPZ) Fibers, J. Eur. Ceram. Soc., 1996, 16, p 653–664

    Article  Google Scholar 

  4. J.A. DiCarlo, R.T. Bhatt, and T.R. McCue, Modeling the thermostructural stability of melt infiltrated SiC/SiC composites, 27th Annual Cocoa Beach Conference on Advanced Ceramics and Composites-B: Ceramic Engineering and Science Proceedings, 270, 2009.

  5. L. Casas and J.M. Martinez-Esnaola, Modelling the Effect of Oxidation on the Creep Behaviour of Fibre-Reinforced Ceramic Matrix Composites, Acta Mater., 2003, 51, p 3745–3757

    Article  Google Scholar 

  6. M. Takeda, Y. Imai, H. Ichikawa, N. Kasai, T. Seguchi, and K. Okamura, Thermal Stability of SiC Fiber Prepared by an Irradiation Curing Process, Compos. Sci. Technol. Soc., 1999, 59, p 793–799

    Article  Google Scholar 

  7. T. Baxevanis and N. Charalambakis, A Micromechanically Based Model for Damage-Enhanced Creep-Rupture in Continuous Fiber-Reinforced Ceramic Matrix Composites, Mech. Mater., 2010, 42, p 570–580

    Article  Google Scholar 

  8. E. Lara-Curzio, Analysis of Oxidation-Assisted Stress-Rupture of Continuous Fiber-Reinforced Ceramic Matrix Composites at Intermediate Temperatures, Compos. A, 1999, 30, p 549–554

    Article  Google Scholar 

  9. G. Chollon, R. Pailler, R. Naslain, F. Laanani, M. Monthioux, and P. Olry, Thermal Stability of PCS-Derived SiC Fibre with Low Oxygen Content (Hi-Nicalon), J. Mater. Sci., 1997, 32, p 327–347

    Article  Google Scholar 

  10. M. Grujicic, S. Ramaswami, J.S. Snipes, R. Galgalikar, V. Chenna, and R. Yavari, Computer-Aided Engineering Analysis of Tooth-Bending Fatigue-Based Failure in Horizontal-Axis Wind-Turbine Gearboxes, Int. J. Struct. Integr., 2014, 5, p 60–82

    Article  Google Scholar 

  11. M. Grujicic, R. Galgalikar, S. Ramaswami, J.S. Snipes, V. Chenna, and R. Yavari, Finite-Element Analysis of Horizontal-Axis Wind-Turbine Gearbox Failure Via Tooth-Bending Fatigue, Int. J. Mater. Mech. Eng., 2014, 3, p 6–15

    Article  Google Scholar 

  12. H.G. Halverson and W.A. Curtin, Stress Rupture in Ceramic-Matrix Composites: Theory and Experiment, J. Am. Ceram. Soc., 2002, 85–6, p 1350–1365

    Article  Google Scholar 

  13. J.L. Chermant and F. Osterstock, Creep Behavior of SiC-Al Materials, Mater. Sci. Eng., 1985, 71, p 147–157

    Article  Google Scholar 

  14. G.N. Morscher, Tensile Creep and Rupture of 2-D Woven SiC/SiC Composites for High Temperature Applications, J. Eur. Ceram. Soc., 2010, 30, p 2209–2221

    Article  Google Scholar 

  15. T. Shimoo, F. Toyoda, and K. Okamura, Oxidation Kinetics of Low-Oxygen Silicon Carbide Fiber, J. Mater. Sci., 2000, 35, p 3301–3306

    Article  Google Scholar 

  16. R. Naslain, A. Guette, F. Rebillat, S. Le Gallet, F. Lamouroux, L. Filipuzzi, and C. Louchet, Oxidation Mechanisms and Kinetics of SiC-Matrix Composites and Their Constituents, J. Mater. Sci., 2004, 39, p 7303–7316

    Article  Google Scholar 

  17. S. Wu, L. Cheng, L. Zhang, Y. Xu, J. Zhang, and H. Mei, Wet oxidation Behaviour of Hi-Nicalon Fibers, Appl. Surf. Sci., 2006, 253, p 1447–1450

    Article  Google Scholar 

  18. ABAQUS Version 6.14, User Documentation, Dassault Systèmes, 2014.

  19. M. Grujicic, J.S. Snipes, R. Yavari, S. Ramaswami, and R. Galgalikar, Computational Investigation of Foreign Object Damage Sustained by Environmental Barrier Coatings (EBCs) and SiC/SiC Ceramic-Matrix Composites (CMCs), Multidiscip. Model. Mater. Struct., 2015, 11(2), p 238–272

    Article  Google Scholar 

  20. M. Grujicic, R. Yavari, J.S. Snipes, and S. Ramaswami, The Effect of Plain-Weaving on the Mechanical Properties of Warp and Weft p-phenylene Terephthalamide (PPTA) Fibers/Yarns, J. Mater. Sci., 2014, 49, p 8272–8293

    Article  Google Scholar 

  21. M. Grujicic, J.S. Snipes, S. Ramaswami, and R. Yavari, Discrete Element Modeling And Analysis of Structural Collapse/Survivability of a Building Subjected to Improvised Explosive Device (IED) Attack, Adv. Mater. Sci. Appl., 2013, 2, p 9–24

    Google Scholar 

  22. M. Grujicic, J.R. Delong, and W. DeRosset, A Reliability Analysis of Hybrid Ceramic/Steel Gun Barrels, Int. J. Fatigue Fract. Eng. Mater. Struct., 2002, 26, p 405–420

    Article  Google Scholar 

  23. M. Grujicic, B. Pandurangan, A. Arakere, C.-F. Yen, and B.A. Cheeseman, Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures under Ballistic Impact Loading Conditions, J. Mater. Eng. Perform., 2013, 22, p 30–40

    Article  Google Scholar 

  24. M. Grujicic, S. Ramaswami, J.S. Snipes, and R. Yavari, Multi-Scale Computation-Based Design of Nano-Segregated Polyurea for Maximum Shockwave-Mitigation Performance, AIMS Mater. Sci., 2014, 1, p 15–27

    Article  Google Scholar 

  25. M. Grujicic, J.S. Snipes, and S. Ramaswami, Application of the Materials-by-Design Approach to the Development of New High-Strength Low-Alloy Steels with Improved Mechanical Properties and Processability, J. Mater. Des. Appl., 2015. doi:10.1177/1464420715616277

    Google Scholar 

  26. M. Grujicic, R. Galgalikar, S. Ramaswami, J.S. Snipes, R. Yavari, and R.K. Bordia, Multi-Physics Modeling and Simulations of Reactive Melt Infiltration Process Used in Fabrication of Ceramic-Matrix Composites (CMCs), Multidiscip. Model. Mater. Struct., 2015, 11(1), p 43–74

    Article  Google Scholar 

  27. M. Grujicic, V. Chenna, R. Galgalikar, J.S. Snipes, S. Ramaswami, and R. Yavari, Wind-Turbine Gear-Box Roller-Bearing Premature-Failure Caused by Grain-Boundary Hydrogen Embrittlement, J. Mater. Eng. Perform., 2014, 23, p 3984–4001

    Article  Google Scholar 

  28. M. Grujicic, S. Ramaswami, R. Yavari, R. Galgalikar, V. Chenna, and J.S. Snipes, Multi-Physics Computational Analysis of White-Etch Cracking Failure Mode in Wind-Turbine Gear-Box Bearings, J. Mater. Des. Appl., 2014. doi:10.1177/1464420714544803

    Google Scholar 

  29. M. Grujicic, V. Chenna, R. Galgalikar, J.S. Snipes, S. Ramaswami, and R. Yavari, Computational Analysis of Gear-Box Roller-Bearing White-Etch Cracking: A Multi-Physics Approach, Int. J. Struct. Integr., 2014, 5(4), p 290–327

    Article  Google Scholar 

  30. M. Grujicic, V. Chenna, R. Yavari, R. Galgalikar, J.S. Snipes, and S. Ramaswami, Multi-Length Scale Computational Analysis of Roller-Bearing Premature Failure in Horizontal-Axis Wind-Turbine Gear-Boxes, Int. J. Struct. Integr., 2015, 5(1), p 40–72

    Article  Google Scholar 

  31. M. Grujicic and S. Arokiaraj, Chemical Compatibility between Zirconia Dispersion and Gamma Titanium Aluminide Matrix, Calphad, 1993, 17(2), p 133–140

    Article  Google Scholar 

  32. M. Grujicic and S.G. Lai, Grain-Scale Modeling of CVD of Polycrystalline Diamond Films, J. Mater. Synth. Process., 2000, 8(2), p 73–85

    Article  Google Scholar 

  33. M. Grujicic and S.G. Lai, Atomistic Simulation of Chemical Vapor Deposition of (111)-oriented Diamond Film Using a Kinetic Monte Carlo Method, J. Mater. Sci., 1999, 34, p 7–20

    Article  Google Scholar 

  34. M. Grujicic, C.L. Zhao, and E.M. Austin, Optimization of a Piezoelectric Bimorph Grasper for Use in Minimally Invasive Surgical Applications, J. Mater. Des. Appl., 2005, 219, p 673–683

    Google Scholar 

  35. M. Grujicic, J.S. Snipes, R. Galgalikar, S. Ramaswami, R. Yavari, C.-F. Yen, and B.A. Cheeseman, Ballistic-Failure Mechanisms in Gas Metal Arc Welds of MIL A46100 Armor-Grade Steel: A Computational Investigation, J. Mater. Eng. Perform., 2014, 23, p 3108–3125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grujicic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grujicic, M., Galgalikar, R., Snipes, J.S. et al. Multi-length-scale Material Model for SiC/SiC Ceramic-Matrix Composites (CMCs): Inclusion of In-Service Environmental Effects. J. of Materi Eng and Perform 25, 199–219 (2016). https://doi.org/10.1007/s11665-015-1850-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1850-1

Keywords

Navigation