Skip to main content
Log in

The Irradiation Performance and Microstructural Evolution in 9Cr-2W Steel Under Ion Irradiation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Grade 92 steel (9Cr-2W) is a ferritic-martensitic steel with good mechanical and thermal properties. It is being considered for structural applications in Generation IV reactors. Still, the irradiation performance of this alloy needs more investigation as a result of the limited available data. The irradiation performance investigation of Grade 92 steel would contribute to the understanding of engineering aspects including feasibility of application, economy, and maintenance. In this study, Grade 92 steel was irradiated by iron ion beam to 10, 50, and 100 dpa at 30 and 500 °C. In general, the samples exhibited good radiation damage resistance at these testing parameters. The radiation-induced hardening was higher at 30 °C with higher dislocation density; however, the dislocation density was less pronounced at higher temperature. Moreover, the irradiated samples at 30 °C had defect clusters and their density increased at higher doses. On the other hand, dislocation loops were found in the irradiated sample at 50 dpa and 500 °C. Further, the irradiated samples did not show any bubble or void.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.L. Klueh, R. Donald, and R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, 1st ed., Conshohocken, PA, 2001

    Book  Google Scholar 

  2. M. Yurechko, C. Schroer, A. Skrypnik, O. Wedemeyer, and J. Konys, Creep-to-Rupture of the Steel P92 at 650 °C in Oxygen-Controlled Stagnant Lead in Comparison to Air, J. Nucl. Mater., 2013, 432, p 78–86

    Article  Google Scholar 

  3. F. Abe, T. Horiuchi, M. Taneike, and K. Sawada, Stabilization of Martensitic Microstructure in Advanced 9Cr Steel During Creep at High Temperature, Mater. Sci. Eng. A, 2004, 378, p 299–303

    Article  Google Scholar 

  4. R.L. Klueh and J.M. Vitek, Tensile Properties of 9Cr-1MoVNb and 12Cr-1MoVW Steels Irradiated to 23 dpa at 390 to 550 °C, J. Nucl. Mater., 1991, 182, p 230–239

    Article  Google Scholar 

  5. G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen et al., Corrosion and Stress Corrosion Cracking in Supercritical Water, J. Nucl. Mater., 2007, 371, p 176–201

    Article  Google Scholar 

  6. S. Alsagabi, T. Shrestha, and I. Charit, High Temperature Tensile Deformation Behavior of Grade 92 Steel, J. Nucl. Mater., 2014, 453, p 151–157

    Article  Google Scholar 

  7. R.L. Klueh and P.J. Maziasz, The Microstructure of Chromium-Tungsten Steels, Metall. Mater. Trans. A, 1989, 20A, p 373–382

    Article  Google Scholar 

  8. R.L. Klueh and A.T. Nelson, Ferritic/Martensitic Steels for Next Generation Reactors, J. Nucl. Mater., 2007, 371, p 37–52

    Article  Google Scholar 

  9. F. Abe, Strengthening Mechanisms in Creep of Advanced Ferritic Power Plant Steels Based on Creep Deformation Analysis, Advanced Steels: The Recent Scenario in Steel Science and Technology, Metallurgical Industry, Y. Weng, D. Hand, Eds., 2011, p 409–422.

  10. C. Topbasi, A.T. Motta, and M. Kirk, In Situ Study of Heavy ion Induced Radiation Damage in NF616 (P92) alloy, J. Nucl. Mater., 2012, 425, p 48–53

    Article  Google Scholar 

  11. K. Sawada, M. Takeda, K. Murayama, R. Ishii, M. Yamada, Y. Nygae, and R. Komine, Effect of W on the Recovery of Lath Structure During Creep of High Chromium Martensitic Steels, Metall. Mater. Trans. A, 1999, 267, p 19–25

    Google Scholar 

  12. Horsten, M., Osch, M., Gelles, D.S., Hamilton, M.L., Effects of Irradiation on Materials: 19th International Symposium, ASTM STP 1366, M.L. Hamilton, A.S. Kumar, S.T. Rosinski, M.L. Grossbeck, Eds., American Society for Testing and Materials, 2000, p 579–593.

  13. M.A. Kirk, P.M. Baldo, A.C.Y. Liu, E.A. Ryan, R.C. Birtcher, Z. Yao, S. Xu, M.L. Jenkins, M. Hernandez-Mayoral, D. Kaoumi, and A.T. Motta, In Situ Transmission Electron Microscopy and Ion Irradiation of Ferritic Materials, Microsc. Res. Tech., 2009, 72, p 182–186

    Article  Google Scholar 

  14. S.X. Jin, L.P. Guo, Z. Yang, D.J. Fu, C.S. Liu, R. Tang et al., Microstructural Evolution of P92 Ferritic/Martensitic Steel Under Argon Ion Irradiation, Mater. Charact., 2011, 62, p 136–142

    Article  Google Scholar 

  15. R.L. Klueh, J.J. Kai, and D.J. Alexander, Microstructure-Mechanical Properties Correlation of Irradiated Conventional and Reduced-Activation Martensitic Steels, J. Nucl. Mater., 1995, 225, p 175–186

    Article  Google Scholar 

  16. S. Jin, L. Guo, T. Li et al., Microstructural Evolution of P92 Ferritic/Martensitic STEEL Under Ar Ion Irradiation at Elevated Temperature, Mater. Charact., 2012, 68, p 63–70

    Article  Google Scholar 

  17. R.L. Klueh and J.M. Vitek, Elevated-Temperature Tensile Properties of Irradiated 9Cr-1MoVNb Steel, J. Nucl. Mater., 1985, 132, p 27–31

    Article  Google Scholar 

  18. E.I. Samuel, B.K. Choudhary, D.P. Rao Palaparti, and M.D. Mathew, Creep Deformation and Rupture Behaviour of P92 Steel at 923 K, Procedia Eng., 2013, 55, p 64–69

    Article  Google Scholar 

  19. X. Liu, R. Wang, A. Ren et al., Evaluation of Radiation Hardening in Ion-Irradiated Fe Based Alloys by Nanoindentation, J. Nucl. Mater., 2014, 444, p 1–6

    Article  Google Scholar 

  20. C. Heintze, C. Recknagel, F. Bergner, M. Hernandez-Mayoral, and A. Kolitsch, Ion-Irradiation-Induced Damage of Steels Characterized by Means of Nanoindentation, Nucl. Instrum. Methods B, 2009, 267, p 1505–1508

    Article  Google Scholar 

  21. R. Kasada, Y. Takayama, K. Yabuuchi, and A. Kimura, A New Approach to Evaluate Irradiation Hardening of Ion Irradiated Ferritic Alloys by Nano-indentation Techniques, Fusion Eng. Des., 2011, 86, p 2658–2661

    Article  Google Scholar 

  22. K. Katoh and M. Ando, Radiation and Helium Effects on Microstructures, Nano-indentation Properties and Deformation Behavior in Ferrous Alloys, J. Nucl. Mater., 2003, 323, p 251–262

    Article  Google Scholar 

  23. P. Hosemann, C. Vieh, R.R. Greco, S. Kabra, J.A. Valdez, M.J. Cappiello, and S.A. Maloy, Nanoindentation on Ion Irradiated Steels, J. Nucl. Mater., 2009, 389, p 239–247

    Article  Google Scholar 

  24. T.R. Allen, L. Tan, J. Gan, G. Gupta, G.S. Was, E.A. Kenik, S. Shutthanandan, and S. Thevuthasan, Microstructural Development in Advanced Ferritic–Martensitic Steel HCM12A, J. Nucl. Mater., 2006, 351, p 174–186

    Article  Google Scholar 

  25. G. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, 1st ed., Springer, Berlin, 2007

    Google Scholar 

  26. S.X. Jin, L.P. Guo, Z. Yang, D.J. Fu, C.S. Liu, R. Tang et al., Microstructural evolution of P92 ferritic/martensitic steel under argon ion irradiation, Mater. Charact., 2001, 62, p 136–142

    Article  Google Scholar 

  27. B.H. Sencer, F.A. Garner, D.S. Gelles, G.M. Bond, and S.A. Maloy, Microstructural Evolution in Modified 9Cr-1Mo Ferritic/Martensitic Steel Irradiated with Mixed High-Energy Proton and Neutron Spectra at Low Temperatures, J. Nucl. Mater., 2002, 307, p 266–271

    Article  Google Scholar 

  28. C.H. Zhang, K.Q. Chen, Y.S. Wang, J.G. Sun, B.F. Hu, Y.F. Jin et al., Microstructural Changes in a Low-Activation Fe-Cr-Mn Alloy Irradiated with 92 MeV Ar Ions at 450 °C, J. Nucl. Mater., 2000, 283, p 259–262

    Article  Google Scholar 

  29. C.H. Zhang, J. Jang, M.C. Kim, H.D. Cho, Y.T. Yang, and Y.M. Sun, Void Swelling in a 9Cr Ferritic/Martensitic Steel Irradiated with Energetic Ne-Ions at Elevated Temperatures, J. Nucl. Mater., 2008, 375, p 185–191

    Article  Google Scholar 

  30. E. Wakai, T. Sawai, K. Furuya, A. Naito, T. Aruga, K. Kikuchi et al., Effect of Triple Ion Beams in Ferritic/Martensitic Steel on Swelling Behavior, J. Nucl. Mater., 2002, 307, p 278–282

    Article  Google Scholar 

  31. F. Zhao, J. Qiao, Y. Huang, F. Wan, and S. Ohnuki, Effect of Irradiation Temperature on Void Swelling of China Low Activation Martensitic Steel (CLAM), J. Nucl. Mater., 2008, 59, p 344–347

    Google Scholar 

  32. H. Tanigawa, H. Sakasegawa, H. Ogiwara, H. Kishimoto, and A. Kohyama, Radiation Induced Phase Instability of Precipitates in Reduced-Activation Ferritic/Martensitic Steels, J Nucl. Mater., 2007, 367, p 132–136

    Article  Google Scholar 

  33. X. Jia and Y. Dai, Microstructure in Martensitic Steels T91 and F82H After Irradiation in SINQ Target-3, J. Nucl. Mater., 2003, 318, p 207–214

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the assistance of Dr. Yaqiao Wu, Ms. Jatuporn Burns, Ms. Joanna Taylor, and Mr. Bryan Forsmann at the Microscopy and Characterization Suite (MaCS) facility of the Center for Advanced Energy Studies (CAES). The work was partly supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-05ID14517, as a part of Advanced Test Reactor National Scientific User Facility (ATR NSUF) experiments. Acknowledgement is also extended to Mr. Lloyd M. Price and Dr. Lin Shao at the Department of Nuclear Engineering, Texas A&M University for their help in carrying out the ion irradiation tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sultan Alsagabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsagabi, S., Charit, I. & Pasebani, S. The Irradiation Performance and Microstructural Evolution in 9Cr-2W Steel Under Ion Irradiation. J. of Materi Eng and Perform 25, 401–408 (2016). https://doi.org/10.1007/s11665-015-1841-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1841-2

Keywords

Navigation