Skip to main content

Advertisement

Log in

Nanoindentation Mechanical Properties of a Bi-phase Cu29Zr32Ti15Al5Ni19 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Mechanical properties of cylindrical bi-phasic high-entropy alloy Cu29Zr32Ti15Al5Ni19 (3 mm in diameter) were characterized by nanoindentation test in each phase. The results show that the constituent FCC phase is of low nanohardness (2.35 GPa) and modulus (60.9 GPa), while another constituent phase in the alloy, the HCP phase, shows much higher nanohardness (6.5 GPa) and modulus (115.3 GPa). Creep occurs in both phases during the indentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.J. Wang, S. Guo, Q. Wang, Z.Y. Liu, J.C. Wang, Y. Yang, and C.T. Liu, Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi, Intermetallics, 2014, 53, p 183–186

    Article  Google Scholar 

  2. C. Sajith Babu, K. Sivaprasad, V. Muthupandi, and J.A. Szpunar, Characterization of nanocrystalline AlCoCrCuNiFeZn high entropy alloy produced by mechanical alloying, Procedia Mater. Sci., 2014, 5, p 1020–1026

    Article  Google Scholar 

  3. X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 2012, 132, p 233–238

    Article  Google Scholar 

  4. Y. Sun, G.F. Zhao, X.Y. Wen, J.W. Qiao, and F.Q. Yang, Nanoindentation deformation of a bi-phase AlCrCuFeNi2 alloy, J. Alloys Compd., 2014, 608, p 49–53

    Article  Google Scholar 

  5. M. Vaidy, S. Armugam, S. Kashyap, and B.S. Murty, Amorphization in equiatomic high entropy alloys, J. Non-Cryst. Solids, 2015, 413, p 8–14

    Article  Google Scholar 

  6. C. Zhu, Z.P. Lu, and T.G. Nieh, Incipient plasticity and dislocation nucleation of FeCoCrNiMn, Acta Mater., 2013, 61, p 2993–3001

    Article  Google Scholar 

  7. Y. Ma, G.J. Peng, D.H. Wen, and T.H. Zhang, Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states, Mater. Sci. Eng. A, 2015, 621, p 111–117

    Article  Google Scholar 

  8. J.L. Wu, Y. Pan, and J.H. Pi, Evaluation of Cu–Zr–Ti–In bulk metallic glasses via nanoindentation, J. Mater. Eng. Perform., 2013, 22, p 2288–2292

    Article  Google Scholar 

  9. A.C. Fischer-Cripps, Nanoindentation, 3rd ed., Springer, New York, 2011

    Book  Google Scholar 

  10. M.J. Cordill, M.S. Lund, J. Parker, C. Leighton, A.K. Nair, D. Farkas, N.R. Moody, and W.W. Gerberich, The Nano-Jackhammer effect in probing near-surface mechanical properties, Int. J. Plast., 2009, 25(p2), p 045–2058

    Google Scholar 

  11. T.H. Zhang, Micro/nanomechanical testing technology, 1st ed., Science Press, Peking, 2013

    Google Scholar 

  12. J.H. Pi, X.C. He, and Z.Z. Wang, Preparation high entropy alloy Cu29Zr32Ti15Al5Ni19 with high glass forming ability, Rare Metal Mater. Eng., 2016, online preview website: http://rmme.ijournal.cn/rmme/ch/reader/view_abstract.aspx?flag=2&file_no=201505150000002&journal_id=rmme#

  13. J.J. Roa, G. Fargas, A. Mateo, and E. Jiménez-Piqué, Dependence of nanoindentation hardness with crystallographic orientation of austenite grains in metastable stainless steels, Mater. Sci. Eng. A, 2015, 645, p 188–195

    Article  Google Scholar 

  14. C. Li and L.C. Zhang, Mechanical behaviour characterisation of silicon and effect of loading rate on pop-in: a nanoindentation study under ultra-low loads, Mater. Sci. Eng. A, 2009, 506, p 125–129

    Article  Google Scholar 

  15. W.H. Li, K. Shin, C.G. Lee, B.C. Wei, T.H. Zhang, and Y.Z. He, The Characterization of creep and time-dependent properties of bulk metallic glasses using nanoindentation, Mater. Sci. Eng. A, 2008, 478, p 371–375

    Article  Google Scholar 

  16. J.L. Hay and G.M. Pharr, Instrumented indentation testing, materials, ASM International, Park, OH, 2000, p 232–243

    Google Scholar 

  17. W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, 7(6), p 1564–1583

    Article  Google Scholar 

  18. Y.I. Golovin, Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: a review, Phys. Solids State, 2008, 50(2), p 2205–2236

    Article  Google Scholar 

  19. R.D. Dar and Y. Chen, Nanoindentation studies of small-scale martensitic transformations and ductile precipitate effects in dual-phase polycrystalline shape memory alloys, Acta Mater., 2015, 91, p 112–127

    Article  Google Scholar 

  20. K. Xiong and J.F. Gu, Understanding pop-in phenomena in FeNi3 nanoindentation, Intermetallics, 2015, 67, p 111–120

    Article  Google Scholar 

  21. M.R. VanLandingham, Review of instrumented indentation, J. Res. Natl. Inst. Stand. Technol., 2003, 108(4), p 249–265

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank for the financial support by the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (ASMA201418), Innovation Fund (CKJA201301, CKJB201302) and Dr. Special Found (ZKJ201403) of Nanjing Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinHong Pi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pi, J., Wang, Z., He, X. et al. Nanoindentation Mechanical Properties of a Bi-phase Cu29Zr32Ti15Al5Ni19 Alloy. J. of Materi Eng and Perform 25, 76–82 (2016). https://doi.org/10.1007/s11665-015-1821-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1821-6

Keywords

Navigation