Skip to main content
Log in

Effect of Surface Nanocrystallization on Fatigue Behavior of Pure Titanium

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The high-cycle fatigue behavior was investigated in pure titanium after surface nanocrystallization (SNC Ti). Compared with the coarse-grained titanium (CG Ti) samples, the SNC Ti samples exhibit an improved fatigue life. The SNC has a remarkable influence on the fatigue cracks initiation and growth of pure titanium. The results show that, because the free-surface cracking is suppressed by the surface nanogradient structure in the SNC Ti, the fatigue cracks initiation sites change from the free surface to the subsurface. Meanwhile, the fatigue crack growth rate decreases due to the microstructural feature and residual compressive stress. The deformation twins in the subsurface of SNC Ti have a marked effect on the fatigue crack initiation and the crack growth. The former effect is due to the twin boundaries being preferential sites for crack initiation, while the latter is associated with the barriers that the twin boundaries pose to the propagation of dislocations. Furthermore, microstructural analysis indicates that the dislocation distribution in SNC Ti gradually becomes homogenous as fatigue processes. This homogeneous microstructure is also beneficial to the improvement of fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Matsuno, A. Yokoyama, and T. Kawasaki, Biocompatibility and Osteogenesis of Refractory Metal Implants, Titanium, hafnium, Niobium, Tantalum and Rhenium, Biomaterials, 2001, 22, p 1253–1262

    Article  Google Scholar 

  2. Z.F. Zhang and Z.G. Wang, Grain Boundary Effects on Cyclic Deformation and Fatigue Damage, Prog. Mater. Sci., 2008, 53, p 1025–1099

    Article  Google Scholar 

  3. Z.F. Zhang and Z.G. Wang, Dependence of Intergranular Fatigue Cracking on the Interactions of Persistent Slip Bands with Grain Boundaries, Acta Mater., 2003, 51, p 347–364

    Article  Google Scholar 

  4. Z.F. Zhang and Z.G. Wang, Comparison of Fatigue Cracking Possibility Along Large-and Low-Angle Grain Boundaries, Mater. Sci. Eng. A, 2000, 284, p 285–291

    Article  Google Scholar 

  5. L. Xiao and Y. Umakoshi, Orientation Dependence of Cyclic Deformation Behavior and Dislocation Structure in Ti-5at.% Al Single Crystals, Mater. Sci. Eng. A, 2003, 339, p 63–72

    Article  Google Scholar 

  6. P. Li, S.X. Li, and Z.G. Wang, Fundamental Factors on Formation Mechanism of Dislocation Arrangements in Cyclically Deformed fcc Single Crystals, Prog. Mater. Sci., 2011, 56, p 328–377

    Article  Google Scholar 

  7. T. Niendorf, D. Canadinc, and I. Karaman, The Role of Grain Size and Distribution on the Cyclic Stability of Titanium, Scr. Mater., 2009, 60, p 344–347

    Article  Google Scholar 

  8. S. Cheng, J. Xie, and P.K. Liaw, Cyclic Deformation of Nanocrystalline and Ultrafine-Grained Nickel, Acta Mater., 2009, 57, p 1272–1280

    Article  Google Scholar 

  9. T. Hanlon, Y.-N. Kwon, and S. Suresh, Grain Size Effects on the Fatigue Response of Nanocrystalline Metals, Scr. Mater., 2003, 49, p 675–680

    Article  Google Scholar 

  10. Z.J. Zhang, P. Zhang, and Z.F. Zhang, Fatigue Cracking at Twin Boundaries: Effects of Crystallographic Orientation and Stacking Fault Energy, Acta Mater., 2012, 60, p 3113–3127

    Article  Google Scholar 

  11. S. Suresh, Fatigue of Material, Cambridge University Press, New York, 1991

    Google Scholar 

  12. A. Vinogradov, S. Nagasaki, and M. Kawazoe, Fatigue Properties of 5056 Al-Mg Alloy Produced by Equal-Channel Angular Pressing, Nanostruct. Mater., 1999, 11, p 925–934

    Article  Google Scholar 

  13. S. Curtis, E.R. De los Rios, and A. Levers, Analysis of the Effects of Controlled Shot Peening on Fatigue Damage of High Strength Aluminium Alloys, Int. J. Fatigue, 2003, 25, p 59–66

    Article  Google Scholar 

  14. T.H. Fang, W.L. Li, and K. Lu, Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-grained Copper, Science, 2011, 331, p 1587–1590

    Article  Google Scholar 

  15. N.R. Tao, Z.B. Wang, and K. Lu, An Investigation of Surface Nanocrystallization Mechanism in Fe Induced by Surface Mechanical Attrition Treatment, Acta Mater., 2002, 50, p 4603–4616

    Article  Google Scholar 

  16. D.K. Yang, P. Cizek, and P.D. Hodgson, Work Hardening in Ultrafine-Grained Titanium: Multilayering and Grading, Acta Mater., 2013, 61, p 2840–2852

    Article  Google Scholar 

  17. K. Dai and L. Shaw, Comparison Between Shot Peening and Surface Nanocrystallization and Hardening Processes, Mater. Sci. Eng. A, 2007, 463, p 46–53

    Article  Google Scholar 

  18. T. Roland, D. Retraint, and J. Lu, Fatigue Life Improvement Through Surface Nanostructuring of Stainless Steel by Means of Surface Mechanical Attrition Treatment, Scr. Mater., 2006, 54, p 1949–1954

    Article  Google Scholar 

  19. L. Yang, N.R. Tao, and L. Lu, Enhanced Fatigue Resistance of Cu with a Gradient Nanograined Surface Layer, Scr. Mater., 2013, 68, p 801–804

    Article  Google Scholar 

  20. W.L. Li, N.R. Tao, and K. Lu, Fabrication of a Gradient Nano-micro-structured Surface Layer on Bulk Copper by Means of a Surface Mechanical Grinding Treatment, Scr. Mater., 2008, 59, p 546–549

    Article  Google Scholar 

  21. R. Avilés, J. Albizuri, and L.N. López de Lacalle, Influence of Low-Plasticity Ball Burnishing on the High-Cycle Fatigue Strength of Medium Carbon AISI, 1045 Steel, Int. J. Fatigue, 2013, 55, p 230–244

    Article  Google Scholar 

  22. Angel L. Ortiz, Jia-Wan Tian, and Peter K. Liaw, Experimental Study of the Microstructure and Stress State of Shot Peened and Surface Mechanical Attrition Treated Nickel Alloys, Scr. Mater., 2010, 62, p 129–132

    Article  Google Scholar 

  23. K. Dai and L. Shaw, Analysis of Fatigue Resistance Improvements via Surface Severe Plastic Deformation, Int. J. Fatigue, 2008, 30, p 1398–1408

    Article  Google Scholar 

  24. X.C. Liu, H.W. Zhang, and K. Lu, Strain-Induced Ultrahard and Ultrastable Nanolaminated Structure in Nickel, Science, 2013, 342, p 337–340

    Article  Google Scholar 

  25. H.T. Wang, N.R. Tao, and K. Lu, Architectured Surface Layer with a Gradient Nanotwinned Structure in a Fe-Mn Austenitic Steel, Scr. Mater., 2013, 68, p 22–27

    Article  Google Scholar 

  26. J.C. Villegas, L.L. Shaw, and D.L. Klrstrom, Enhanced Fatigue Resistance of a Nickel-Based Hastelloy Induced by a Surface Nanocrystallization and Hardening Process, Philos. Mag. Lett., 2005, 85, p 427–438

    Article  Google Scholar 

  27. K.Y. Zhu, A. Vassel, and J. Lu, Nanostructure Formation Mechanism of α-Titanium Using SMAT, Acta Mater., 2004, 52, p 4101–4110

    Article  Google Scholar 

  28. Q. Wang, Y.F. Yin, and J. Sun, Gradient Nano Microstructure and Its Formation Mechanism in Pure Titanium Produced by Surface Rolling Treatment, J. Mater. Res., 2014, 29, p 569–577

    Article  Google Scholar 

  29. Amit Shyam and Edgar Lara-Curzio, A Model for the Formation of Fatigue Striations and Its Relationship with Small Fatigue Crack Growth in an Aluminum Alloy, Int. J. Fatigue, 2010, 32, p 1843–1852

    Article  Google Scholar 

  30. J.H. Bulloch and A.G. Callagy, A Detailed Study of the Relationship Between Fatigue Crack Growth Rate and Striation Spacing in a Range of Low Alloy Ferritic Steels, Eng. Fail. Anal., 2010, 17, p 168–178

    Article  Google Scholar 

  31. J.J. Williams, K.E. Yazzie, and M. Kittur, On the Correlation Between Fatigue Striation Spacing and Crack Growth Rate: A Three-Dimensional (3-D) X-ray Synchrotron Tomography Study, Metall. Mater. Trans. A, 2011, 42, p 3845–3849

    Article  Google Scholar 

  32. D.A. Lados and D. Apelian, Fatigue Crack Growth Characteristics in Cast Al-Si-Mg Alloys: Part I. Effect of Processing Conditions and Microstructure, Mater. Sci. Eng. A, 2004, 385, p 200–211

    Google Scholar 

  33. Y. Murakami, Stress Intensity Factors Handbook, 1st ed., Pergamon, Oxford, 1987

    Google Scholar 

  34. P.F.P. de Matos, A.J. McEvily, and P.M.S.T. de Castro, Analysis of the Effect of Cold-Working of Rivet Holes on the Fatigue Life of an Aluminum Alloy, Int. J. Fatigue, 2007, 29, p 575–586

    Article  Google Scholar 

  35. J.L. Robinson and C.J. Beevers, The Effects of Load Ratio, Interstitial Content, and Grain Size on Low-Stress Fatigue-Crack Propagation in α-Titanium, Met. Sci. J., 1973, 7, p 153–159

    Article  Google Scholar 

  36. C.M. Ward-close and C.J. Beevers, The Influence of Grain Orientation on the Mode and Rate of Fatigue Crack Growth in α-Titanium, Metall. Meter. Trans. A, 1980, 11, p 1007–1017

    Article  Google Scholar 

  37. C.E. Rousseau and H.V. Tippur, Compositionally Graded Materials with Cracks Normal to the Elastic Gradient, Acta Mater., 2000, 48, p 4021–4033

    Article  Google Scholar 

  38. F. Yang, S.M. Yin, and Z.F. Zhang, Crack Initiation Mechanism of Extruded AZ31 Magnesium Alloy in the Very High Cycle Fatigue Regime, Mater. Sci. Eng. A, 2008, 491, p 131–136

    Article  Google Scholar 

  39. L. Xiao, Twinning Behavior in the Ti-5 at.% Al Single Crystals During Cyclic Loading Along [0001], Mater. Sci. Eng. A, 2005, 394, p 168–175

    Article  Google Scholar 

  40. J.Z. Zhou, S. Huang, and H.S. Chen, Effect of Repeated Impacts on Mechanical Properties and Fatigue Fracture Morphologies of 6061-T6 Aluminum Subject to Laser Peening, Mater. Sci. Eng. A, 2012, 539, p 360–368

    Article  Google Scholar 

  41. D.K. Xu and E.H. Han, Relationship Between Fatigue Crack Initiation and Activated Twins in As-extruded Pure Magnesium, Scr. Mater., 2013, 69, p 702–705

    Article  Google Scholar 

  42. W. Liu, G.H. Wu, and A.M. Korsunsky, Grain Refinement and Fatigue Strengthening Mechanisms in As-extruded Mg-6Zn-0.5Zr and Mg-10Gd-3Y-0.5Zr Magnesium Alloys by Shot Peening, Int. J. Plast., 2013, 49, p 16–35

    Article  Google Scholar 

  43. M.D. Sangid, G.J. Pataky, and J. Maier, Superior Fatigue Crack Growth Resistance, Irreversibility, and Fatigue Crack Growth-Microstructure Relationship of Nanocrystalline Alloys, Acta Mater., 2011, 59, p 7340–7355

    Article  Google Scholar 

  44. T. Yokobori, A.T. Yokobori, Jr., and A. Kamei, Dislocation Dynamics Theory for Fatigue Crack Growth, Int. J. Fract., 1975, 11, p 781–788

    Article  Google Scholar 

  45. G.A. Webster and A.N. Ezeilo, Residual Stress Distributions and Their Influence on Fatigue Lifetimes, Int. J. Fatigue, 2001, 23, p S375–S383

    Article  Google Scholar 

  46. Y.K. Gao and X.R. Wu, Experimental Investigation and Fatigue Life Prediction for 7475-T7351 Aluminum Alloy With and Without Shot Peening-Induced Residual Stresses, Acta Mater., 2011, 59, p 3737–3747

    Article  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the National Natural Science Foundation of China (51471129 and 51321003), the 973 Program of China (2014CB644003), and the 111 Project of China (B06025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiaoyan Sun or Lin Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Sun, Q., Xiao, L. et al. Effect of Surface Nanocrystallization on Fatigue Behavior of Pure Titanium. J. of Materi Eng and Perform 25, 241–249 (2016). https://doi.org/10.1007/s11665-015-1819-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1819-0

Keywords

Navigation