Skip to main content
Log in

High-Temperature Deformation Behavior of a Ti-6Al-7Nb Alloy in Dual-Phase (α + β) and Single-Phase (β) Regions

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study aimed to characterizing the microstructure evolution of a Ti-6Al-7Nb biomedical type titanium alloy during hot working through hot compression tests. The hot deformation cycles were conducted under the strain rate of 0.0025, 0.025, and 0.25 s−1 in the temperature range of 850-1150 °C where both dual-phase (α + β) and single-phase (β) regions could be accessible. The flow stress behavior of the material for the entire deformation regime was interpreted via microstructural observations. The results indicated that in the single-phase β region (1050-1150 °C), the dynamically recrystallized (DRX) grains were formed at the deformed and elongated beta grain boundaries as a necklace-like structure. The variations in the dynamically recrystallized grain size were determined to follow the Zener-Hollomon relationship where DRX grain size was decreased by reducing the temperature and increasing the strain rate. The alloy deformation characteristics in α + β region were somewhat different. During deformation in the upper α + β temperature range (e.g., 1000 °C), the β phase would accommodate most of the deformation, while α regions remained undeformed. In the lower α + β temperature range (e.g., 850-950 °C), the kinking/bending of α lamellae as well as the subsequent globularization of α layers were postulated to be responsible for the observed flow softening behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S.L. Semiatin, V. Seetharaman, and I. Weiss, Flow Behavior and Globularization Kinetics During Hot Working of Ti–6Al–4V with a Colony Alpha Microstructure, Mater. Sci. Eng. A, 1999, 263, p 257–271

    Article  Google Scholar 

  2. Y. Han, W. Zeng, Y. Qi, and Y. Zhao, Optimization of Forging Process Parameters of Ti600 Alloy by Using Processing Map, Mater. Sci. Eng. A., 2011, 529, p 393–400

  3. Y. Zong, D.B. Shan, and Y. Lu, Microstructural Evolution of a Ti-4.5 Al-3Mo-1V Alloy During Hot Working, J. Mater. Sci., 2006, 41, p 3753–3760

    Article  Google Scholar 

  4. Y.V.R.K. Prasad, T. Seshacharyulu, S.C. Medeiros, and W.G. Frazier, Influence of Oxygen Content on the Forging Response of Equiaxed (α + β) Preform of Ti–6Al–4V: Commercial vs. ELI, Grade, Eng. Mater. Technol., 2001, 123, p 355–360

    Article  Google Scholar 

  5. R. Ding, Z.X. Guo, and A. Wilson, Microstructural Evolution of a Ti–6Al–4V Alloy During Thermomechanical Processing, Mater. Sci. Eng. A, 2002, 327, p 233–245

    Article  Google Scholar 

  6. J.F. Uginet, Titanium’92 Science and Technology, F.H. Froes and I. Caplan, Ed., TMS, Warrendale, 1993, p 463–471

    Google Scholar 

  7. P.J. Postans and R.H. Jeal, Titanium’80 Science and Technology, H. Kimura and O. Izuma, Ed., AIME, Kyoto, 1980, p 441–455

    Google Scholar 

  8. F. Ma, W. Lu, J. Qin, and D. Zhang, Microstructure Evolution of Near-α Titanium Alloy During Thermomechanical Processing, Mater. Sci. Eng. A, 2006, 416, p 59–65

    Article  Google Scholar 

  9. M. Jackson, R. Dashwood, H. Flower, and V. Christodoulou, The Microstructural Evolution of Near Beta Alloy Ti-10V-2Fe-3Al During Subtransus Forging, Metal. Mater. Trans. A, 2005, 36, p 1317–1327

    Article  Google Scholar 

  10. X. Ma, W. Zeng, F. Tian, Y. Zhou, and Y. Sun, Optimization of Hot Process Parameters of Ti–6.7 Al–2Sn–2.2 Zr–2.1 Mo–1W–0.2 Si Alloy with Lamellar Starting Microstructure Based on the Processing Map, Mater. Sci. Eng. A, 2012, 545, p 132–138

    Article  Google Scholar 

  11. F. Pilehva, A. Zarei-Hanzaki, M. Ghambari, and H.R. Abedi, Flow Behavior Modeling of a Ti–6Al–7Nb Biomedical Alloy During Manufacturing at Elevated Temperatures, Mater. Des., 2013, 51, p 457–465

    Article  Google Scholar 

  12. B. Liu, Y.P. Li, H. Matsumoto, Y.B. Liu, Y. Liu, and A. Chiba, Thermomechanical Characterization of P/M Ti–Fe–Mo–Y Alloy with a Fine Lamellar Microstructure, Mater. Sci. Eng. A, 2011, 528, p 2345–2352

    Article  Google Scholar 

  13. T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, J.C. Malas, W.G. Frazier, and Y.V.R.K. Prasad, Hot Deformation and Microstructural Damage Mechanisms in Extra-Low Interstitial (ELI) Grade Ti–6Al–4V, Mater. Sci. Eng. A, 2000, 279, p 289–299

    Article  Google Scholar 

  14. L.J. Huang, L. Geng, A.B. Li, X.P. Cui, H.Z. Li, and G.S. Wang, Characteristics of Hot Compression Behavior of Ti–6.5 Al–3.5 Mo–1.5 Zr–0.3 Si Alloy with an Equiaxed Microstructure, Mater. Sci. Eng. A, 2009, 505, p 136–143

    Article  Google Scholar 

  15. Y. Zong, D.B. Shan, M. Xu, and Y. Lu, Flow Softening and Microstructural Evolution of TC11 Titanium Alloy During Hot Deformation, J. Mater. Process. Technol., 2009, 209, p 1988–1994

    Article  Google Scholar 

  16. M.F. López, A. Gutiérrez, and J.A. Jiménez, In Vitro Corrosion Behavior of Titanium Alloys Without Vanadium, Electrochim. Acta, 2002, 47, p 1359–1364

    Article  Google Scholar 

  17. X. Liu, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R, 2004, 47, p 49–121

    Article  Google Scholar 

  18. W.F. Cui, Z. Jin, A.H. Guo, and L. Zhou, High Temperature Deformation Behavior of α + β-type Biomedical Titanium Alloy Ti–6Al–7Nb, Mater. Sci. Eng. A, 2009, 499, p 252–256

    Article  Google Scholar 

  19. Y. Liu, Y. Ning, Z. Yao, and H. Guo, Hot Deformation Behavior of Ti–6.0Al–7.0Nb Biomedical Alloy by Using Processing Map, J. Alloy Compd., 2014, 587, p 183–189

    Article  Google Scholar 

  20. T. Akahori, M. Niinomi, K.I. Fukunaga, and I. Inagaki, Effects of Microstructure on the Short Fatigue Crack Initiation and Propagation Characteristics of Biomedical α/β Titanium Alloys, Metall. Mater. Trans. A, 2000, 31A, p 1949–1958

    Article  Google Scholar 

  21. P. Vo, M. Jahazi, and S. Yue, Recrystallization During Thermomechanical Processing of IMI834, Metal. Mater. Trans. A., 2008, 39A, p 2965–2980

    Article  Google Scholar 

  22. B. Appolaire, L. Héricher, and E. Aeby-Gautier, Modelling of Phase Transformation Kinetics in Ti Alloys–Isothermal Treatments, Acta Mater., 2005, 53, p 3001–3011

    Article  Google Scholar 

  23. P. Wanjara, M. Jahazi, H. Monajati, and S. Yue, Influence of Thermomechanical Processing on Microstructural Evolution in Near-α Alloy IMI834, Mater. Sci. Eng. A, 2006, 416, p 300–311

    Article  Google Scholar 

  24. I. Weiss and S.L. Semiatin, Thermomechanical Processing of Beta Titanium Alloys—An Overview, Mater. Sci. Eng. A, 1998, 243, p 46–65

    Article  Google Scholar 

  25. M. Jafari and A. Najafizadeh, Correlation Between Zener-Hollomon Parameter and Necklace DRX During Hot Deformation of 316 Stainless Steel, Mater. Sci. Eng. A, 2009, 501, p 16–25

    Article  Google Scholar 

  26. W. Jia, W. Zeng, J. Liu, Y. Zhou, and Q. Wang, On the Influence of Processing Parameters on Microstructural Evolution of a Near Alpha Titanium Alloy, Mater. Sci. Eng. A, 2011, 530, p 135–143

    Article  Google Scholar 

  27. W. Peng, W. Zeng, Q. Wang, Q. Zhao, and H. Yu, Effect of Processing Parameters on Hot Deformation Behavior and Microstructural Evolution During Hot Compression of as-Cast Ti60 Titanium Alloy, Mater. Sci. Eng. A, 2014, 593, p 16–23

    Article  Google Scholar 

  28. Y. Han, W. Zeng, Y. Qi, and Y. Zhao, The Influence of Thermomechanical Processing on Microstructural Evolution of Ti600 Titanium Alloy, Mater. Sci. Eng. A., 2011, 528, p 8410–8416

  29. F. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004

    Google Scholar 

  30. X.G. Fan, H. Yang, and P.F. Gao, Deformation Behavior and Microstructure Evolution in Multistage Hot Working of TA15 Titanium Alloy: on the Role of Recrystallization, J. Mater. Sci., 2011, 46, p 6018–6028

    Article  Google Scholar 

  31. S. Roy and S. Suwas, The Influence of Temperature and Strain Rate on the Deformation Response and Microstructural Evolution During Hot Compression of a Titanium Alloy Ti–6Al–4V–0.1B, J. Alloy Compd., 2013, 548, p 110–125

    Article  Google Scholar 

  32. T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, J.C. Malas, W.G. Frazier, and Y.V.R.K. Prasad, Hot Deformation Mechanisms in ELI, Grade Ti-6A1-4V, Scr. Mater., 1999, 41, p 283–288

    Article  Google Scholar 

  33. S.V. Zherebtsov, M.A. Murzinova, M.V. Klimova, G.A. Salishchev, A.A. Popov, and S.L. Semiatin, Microstructure Evolution During Warm Working of Ti–5Al–5Mo–5 V–1Cr–1Fe at 600 and 800 C, Mater. Sci. Eng. A, 2013, 563, p 168–176

    Article  Google Scholar 

  34. S. Roy, A. Sarkar, and S. Suwas, On Characterization of Deformation Microstructure in Boron Modified Ti–6Al–4V Alloy, Mater. Sci. Eng. A, 2010, 528, p 449–458

    Article  Google Scholar 

  35. C. Li, X.Y. Zhang, K.C. Zhou, and C.Q. Peng, Relationship Between Lamellar α Evolution and Flow Behavior During Isothermal Deformation of Ti–5Al–5Mo–5 V–1Cr–1Fe Near β Titanium Alloy, Mater. Sci. Eng. A, 2012, 558, p 668–674

    Article  Google Scholar 

  36. S. Zherebtsov, M. Murzinova, G. Salishchev, and S.L. Semiatin, Spheroidization of the Lamellar Microstructure in Ti–6Al–4 V Alloy During Warm Deformation and Annealing, Acta Mater., 2011, 59, p 4138–4150

    Article  Google Scholar 

  37. I. Weiss, F.H. Froes, D. Eylon, and G.E. Welsch, Modification of Alpha Morphology in Ti-6Al-4 V by Thermomechanical Processing, Metall. Trans., 1986, 17A, p 1935–1947

    Article  Google Scholar 

  38. H.W. Song, S.H. Zhang, and M. Cheng, Dynamic Globularization Kinetics During Hot Working of a Two Phase Titanium Alloy with a Colony Alpha Microstructure, J. Alloy Compd., 2009, 480, p 922–927

    Article  Google Scholar 

  39. X. Ma, W. Zeng, F. Tian, and Y. Zhou, The Kinetics of Dynamic Globularization During Hot Working of a Two Phase Titanium Alloy with Starting Lamellar Microstructure, Mater. Sci. Eng. A, 2012, 548, p 6–11

    Article  Google Scholar 

  40. B. Poorganji, M. Yamaguchi, Y. Itsumi, K. Matsumoto, T. Tanaka, Y. Asa, G. Miyamoto, and T. Furuhara, Microstructure Evolution During Deformation of a Near-α Titanium Alloy with Different Initial Structures in the Two-Phase Region, Scr. Mater., 2009, 61, p 419–422

    Article  Google Scholar 

  41. L. Lei, X. Huang, M. Wang, L. Wang, J. Qin, and S. Lu, Effect of Temperature on Deformation Behavior and Microstructures of TC11 Titanium Alloy, Mater. Sci. Eng. A, 2011, 528, p 8236–8243

    Article  Google Scholar 

  42. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Hot Working of Commercial Ti–6Al–4V with an Equiaxed α–β Microstructure: Materials Modeling Considerations, Mater. Sci. Eng. A, 2000, 279, p 184–194

    Article  Google Scholar 

  43. J. Zhang, H. Di, H. Wang, K. Mao, T. Ma, and Y. Cao, Hot Deformation Behavior of Ti-15-3 Titanium Alloy: A Study Using Processing Maps, Activation Energy Map, and Zener-Hollomon Parameter Map, J. Mater. Sci., 2012, 47, p 4000–4011

    Article  Google Scholar 

  44. F. Pilehva, A. Zarei-Hanzaki, S.M. Fatemi-Varzaneh, and A.R. Khalesian, Hot Deformation and Dynamic Recrystallization of Ti-6Al-7Nb Biomedical Alloy in Single-Phase β Region, J. Mater. Eng. Perform., 2015, 24, p 1799–1808

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zarei-Hanzaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilehva, F., Zarei-Hanzaki, A., Moemeni, S. et al. High-Temperature Deformation Behavior of a Ti-6Al-7Nb Alloy in Dual-Phase (α + β) and Single-Phase (β) Regions. J. of Materi Eng and Perform 25, 46–58 (2016). https://doi.org/10.1007/s11665-015-1813-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1813-6

Keywords

Navigation