Skip to main content
Log in

Effect of Temperature on Microstructure, Corrosion Resistance, and Toughness of Salt Bath Nitrided Tool Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, a type of hot work tool steel was modified through salt bath nitriding for 4 h at 540 and 560 °C, and post-oxidation was subsequently performed. Surface and cross-sectional hardness test results revealed that the surface hardness increased after the treatment because of the formation of compound layers and diffusion zones. Microstructures and phase analyses showed that more homogeneous compound layers and Fe3O4-phase could be generated after treatment at 560 than at 540 °C. As a result, the corrosion potential was elevated, and the corrosion current density was clearly reduced. The thickness and porosity of the compound layer were also increased with the elevated nitriding temperature. Because of the nitrogen atom solution, XRD diffraction peaks broadened, and the position of the peaks shifted to a lower angle in different degrees at different depths, thus showing the same tendency as the hardness curves. Salt bath nitriding significantly deteriorated the impact toughness from 32.3 to 5.2 J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.B. Winck, J.L.A. Ferreira, J.A. Araujo, M.D. Manfrinato, and C.R.M. da Sliva, Surface Nitriding Influence on the Fatigue Life Behavior of ASTM A743 Steel Type CA6NM, Surf. Coat. Technol., 2013, 232, p 844–850.

    Article  Google Scholar 

  2. R.B. Huang, J. Wang, S. Zhong, M.X. Li, J. Xiong, and H.Y. Fan, Surface Modification of 2205 Duplex Stainless Steel by Low Temperature Salt Bath Nitrocarburizing at 430 °C, Appl. Surf. Sci., 2013, 271, p 93–97.

    Article  Google Scholar 

  3. M.L. Fares, M.Z. Touhami, M. Belaid, and H. Bruyas, Surface Characteristics Analysis of Nitrocarburized (Tenifer) and Carbonitrided Industrial Steel AISI, 02 Types, Surf. Interface Anal., 2009, 41, p 179–186.

    Article  Google Scholar 

  4. H. Nagamatsu, R. Ichiki, Y. Yasumatsu, T. Inoue, M. Yoshida, S. Akamine, and S. Kanazawa, Steel Nitriding by Atmospheric-Pressure Plasma Jet Using N2-H2 Mixture Gas, Surf. Coat. Technol., 2013, 225, p 26–33.

    Article  Google Scholar 

  5. G.J. Li, Q. Peng, C. Li, Y. Wang, J. Gao, S.Y. Chen, J. Wang, and B.L. Shen, Microstructure Analysis of 304L Austenitic Stainless Steel by QPQ Complex Salt Bath Treatment, Mater. Charact., 2008, 59, p 1359–1363.

    Article  Google Scholar 

  6. W. Cai, F.N. Meng, X.Y. Gao, and J. Hu, Effect of QPQ Nitriding Time on Wear and Corrosion Behavior of 45 Carbon Steel, Appl. Surf. Sci., 2012, 261, p 411–414.

    Article  Google Scholar 

  7. G.J. Li, J. Wang, Q. Peng, C. Li, Y. Wang, and B.L. Shen, Influence of Salt Bath Nitrocarburizing and Post-Oxidation Process on Surface Microstructure Evolution of 17-4PH Stainless Steel, J. Mater. Process. Technol., 2008, 207, p 187–192.

    Article  Google Scholar 

  8. J. Vatavuk, L.C.F. Canale, G.E. Totten, and S.G. Cardoso, The Effect of Nitriding on the Toughness and Bending Resistance of Tool Steels, Int. J. Microstruct. Mater. Prop., 2008, 3, p 563–575.

    Google Scholar 

  9. J. Alphonsa, B.A. Padsala, B.J. Chauhan, G. Jhala, P.A. Rayjada, N. Chauhan, S.N. Soman, and P.M. Raole, Plasma Nitriding on Welded Joints of AISI, 304 Stainless Steel, Surf. Coat. Technol., 2013, 228, p S306–S311.

    Article  Google Scholar 

  10. T. Balusamy, T.S.N. Sankara Narayanana, K. Ravichandran, I.S. Parkc, and M.H. Lee, Plasma Nitriding of AISI, 304 Stainless Steel: Role of Surface Mechanical Attrition Treatment, Mater. Charact., 2013, 85, p 38–47.

    Article  Google Scholar 

  11. L.N. Tang and M.F. Yan, Influence of Plasma Nitriding on the Microstructure, Wear, and Corrosion Properties of Quenched 30CrMnSiA Steel, J. Mater. Eng. Perform., 2012, 22(7), p 2121–2129.

    Article  Google Scholar 

  12. B.S. Yilbas, A.Z. Sahin, S.A.M. Said, J. Nickel, and A. Coban, Investigation into Some Tribological Properties of Plasma Nitrided Hot-Worked Tool Steel AISI, H11, J. Mater. Eng. Perform., 1996, 5(2), p 220–224.

    Article  Google Scholar 

  13. F.B. Pickering, Physical Metallurgy and the Design of Steels, Applied Science Publishers Ltd, London, 1978.

    Google Scholar 

  14. F. Lantelme, H. Groult, H. Mosqueda, P.L. Magdinier, H. Chavanne, V. Monteux, and P. Maurin-Perrier, Molten Salts Chemistry, Elsevier Inc., New York, 2013.

    Google Scholar 

  15. Y. Birol, Response to Thermal Cycling of Plasma Nitrided Hot Work Tool Steel at Elevated Temperatures, Surf. Coat. Technol., 2010, 205, p 597–602.

    Article  Google Scholar 

  16. R.L.O. Basso, R.J. Candal, C.A. Figueroa, D. Wisnivesky, and F. Alvarez, Influence of Microstructure on the Corrosion Behavior of Nitrocarburized AISI, H13 Tool Steel Obtained by Pulsed DC Plasma, Surf. Coat. Technol., 2009, 203, p 1293–1297.

    Article  Google Scholar 

  17. H.Y. Li, D.F. Luo, C.F. Yeung, and K.H. Lau, Microstructural Studies of QPQ Complex Salt Bath Heat-Treated Steels, J. Mater. Process. Technol., 1997, 69, p 45–49.

    Article  Google Scholar 

  18. F. Borgioli, A. Fossati, E. Galvanetto, and T. Bacci, Glow-Discharge Nitriding of AISI, 316L Austenitic Stainless Steel: Influence of Treatment Temperature, Surf. Coat. Technol., 2005, 200, p 2470–2480.

    Article  Google Scholar 

  19. Z.S. Zhou, M.Y. Dai, Z.Y. Shen, and J. Hua, Effect of D.C. Electric Field on Salt Bath Nitriding for 35 Steel and Kinetics Analysis, J. Alloys Compd., 2015, 623, p 261–265.

    Article  Google Scholar 

  20. L. Wang and X.L. Xu, XTEM and XPS Studies of Plasma Nitrocarburising Layers on 0.45% C Steel, Surf. Coat. Technol., 2000, 126, p 288–293.

    Article  Google Scholar 

  21. W. Schröter, and A. Spengler, Beitrag zum Erkenntnisstand der Porenentstehung bei der Schichtbildung durch Stickstoff in Eisenwerkstoffen, Tagungsband der ATTT/AWT-Tagung, Aachen, 2002, S35–S49.

  22. S.M. Hassani-Gangaraj, A. Moridi, M. Guagliano, and A. Ghidini, Nitriding Duration Reduction Without Sacrificing Mechanical Characteristics and Fatigue Behavior: The Beneficial Effect of Surface Nano-crystallization by Prior Severe Shot Peening, Mater. Des., 2014, 55, p 492–498.

    Article  Google Scholar 

  23. W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, and K. Lu, Nitriding Iron at Lower Temperature, Sci., 2003, 299, p 686–688.

    Article  Google Scholar 

  24. J.O.M. Brien and D. Goodman, Plasma (Ion) Nitriding, ASM Handbook, Vol 4, American Society for Metals, Metals Park, OH, 1991.

    Google Scholar 

  25. A. Basu, J.D. Majumdar, J. Alphonsa, S. Mukherjee, and I. Manna, Corrosion Resistance Improvement of High Carbon Low Alloy Steel by Plasma Nitriding, Mater. Lett., 2008, 62, p 3117–3120.

    Article  Google Scholar 

  26. K. Köster, P. Kaestner, G. Bräuer, H. Hoche, T. Troßmann, and M. Oechsner, Material Condition Tailored to Plasma Nitriding Process for Ensuring Corrosion and Wear Resistance of Austenitic Stainless Steel, Surf. Coat. Technol., 2013, 228, p S615–S618.

    Article  Google Scholar 

  27. R.L.O. Basso, H.O. Pastore, V. Schmidt, I.J.R. Baumvol, S.A.C. Abarca, F.S. de Souza, A. Spinelli, C.A. Figueroa, and C. Giacomelli, Microstructure and Corrosion Behaviour of Pulsed Plasma-Nitrided AISI, H13 Tool Steel, Corros. Sci., 2010, 52, p 3133–3139.

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the Chengdu Surface Metal Technology Co. Ltd. for their support of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Zhang, J., Huang, J. et al. Effect of Temperature on Microstructure, Corrosion Resistance, and Toughness of Salt Bath Nitrided Tool Steel. J. of Materi Eng and Perform 25, 3–8 (2016). https://doi.org/10.1007/s11665-015-1762-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1762-0

Keywords

Navigation