Skip to main content

Advertisement

Log in

Effect of Heat Treatment on the Microstructure and Properties of Deformation-Processed Cu-7Cr In Situ Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of heat treatment on the microstructure, electrical conductivity, and tensile strength of deformation-processed Cu-7Cr in situ composites produced by thermo-mechanical processing was investigated. The Cr fibers in the Cu-7Cr in situ composite underwent coarsening, break-up, and spheroidization after exposure to elevated temperatures. The conductivity and tensile strength of the in situ composite first increased with increasing isochronal heat treatment temperature, reached a peak value, and decreased at higher temperatures. The isothermal heat treatment temperature was determined to be 625 °C. The Z (Z is an optimization parameter to evaluate the service performance of deformation-processed Cu-based in situ composites) value of the deformation-processed Cu-7Cr in situ composite, at η = 7 (η is a cumulative cold deformation strain) after the heat treatment at 625 °C for 1 h, reached the peak value of 3.46 × 107 MPa2 % International Annealed Copper Standard (IACS). The isochronal heat treatment time was determined to be 1 h. The following combination of conductivity and tensile strength of the deformation-processed Cu-7Cr in situ composite with a cumulative cold deformation strain of eight after isochronal aging treatments for 1 h could be attained respectively as (i) 76.0% IACS and 889 MPa; (ii) 76.8% IACS and 876 MPa; or (iii) 77.5% IACS and 779 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Sauvage, P. Jessner, F. Vurpillot, and R. Pippan, Nanostructure and Properties of a Cu-Cr Composite Processed by Severe Plastic Deformation, Scr. Mater., 2008, 58, p 1125–1128

    Article  Google Scholar 

  2. D. Raabe, S. Ohsaki, and K. Hono, Mechanical Alloying and Amorphization in Cu-Nb-Ag In Situ Composite Wires Studied by Transmission Electron Microscopy and Atom Probe Tomography, Acta Mater., 2009, 57, p 5254–5263

    Article  Google Scholar 

  3. Z.X. Xie, H.Y. Gao, J. Wang, and B.D. Sun, Effect of Homogenization Treatment on Microstructure and Properties for Cu-Fe-Ag In Situ Composites, Mater. Sci. Eng. A, 2011, 529, p 388–392

    Article  Google Scholar 

  4. J.P. Ge, H. Zhao, Z.Q. Yao, and S.H. Liu, Microstructure and Properties of Deformation-Processed Cu-Fe In Situ Composites, Trans. Nonferrous Met. Soc. China, 2005, 15, p 971–977

    Google Scholar 

  5. H. Fernee, J. Nairn, and A. Atrens, Precipitation Hardening of Cu-Fe-Cr Alloys, Part I, Mechanical and Electrical Properties, J. Mater. Sci., 2001, 36, p 2711–2719

    Article  Google Scholar 

  6. Y.S. Kim, J.S. Song, and S.I. Hong, Thermo-Mechanical Processing and Properties of Cu-Fe-Cr Microcomposites, J. Mater. Process. Technol., 2002, 130–131, p 278–282

    Article  Google Scholar 

  7. S.I. Hong, J.S. Song, and H.S. Kim, Thermo-Mechanical Processing and Properties of Cu-9Fe-1.2Co Microcomposite Wires, Scr. Mater., 2001, 45, p 1295–1300

    Article  Google Scholar 

  8. K.L. Lee, The Thermo-Mechanical Behaviour of Cu-Cr In Situ Composite, J. Mater. Sci., 2004, 39, p 3047–3055

    Article  Google Scholar 

  9. D. Raabe and J. Ge, Experimental Study on the Thermal Stability of Cr Filaments in a Cu-Cr-Ag In Situ Composite, Scr. Mater., 2004, 51, p 915–920

    Article  Google Scholar 

  10. Y. Jin, K. Adachi, T. Takeuchi, and H.G. Suzuki, Ageing Characteristics of Cu-Cr In Situ Composite, J. Mater. Sci., 1998, 33, p 1333–1341

    Article  Google Scholar 

  11. J.Q. Deng, X.Q. Zhang, S.Z. Shang, F. Liu, Z.X. Zhao, and Y.F. Ye, Effect of Zr Addition on the Microstructure and Properties of Cu-10Cr In Situ Composites, Mater. Des., 2009, 30, p 4444–4449

    Article  Google Scholar 

  12. K.M. Liu, D.P. Lu, H.T. Zhou, A. Atrens, Z.B. Chen, J. Zou, and S.M. Zeng, Influence of Ag Micro-alloying on the Microstructure and Properties of Cu-7Cr In Situ Composite, J. Alloys Compd., 2010, 500, p L22–L25

    Article  Google Scholar 

  13. H. Gao, J. Wang, and B. Sun, Effect of Ag on the Thermal Stability of Deformation Processed Cu-Fe In Situ Composites, J. Alloys Compd., 2009, 469, p 580–586

    Article  Google Scholar 

  14. J.S. Song, S.I. Hong, and Y.G. Park, Deformation Processing and Strength/Conductivity Properties of Cu-Fe-Ag Microcomposites, J. Alloys Compd., 2005, 388, p 69–74

    Article  Google Scholar 

  15. H. Gao, J. Wang, D. Shu, and B. Sun, Effect of Ag on the Aging Characteristics of Cu-Fe In Situ Composites, Scr. Mater., 2006, 54, p 1931–1935

    Article  Google Scholar 

  16. W.A. Spitzig, L.S. Chumbley, J.D. Verhoeven, Y.S. Go, and H.L. Downing, Effect of Temperature on the Strength and Conductivity of a Deformation Processed Cu-20%Fe Composite, J. Mater. Sci., 1992, 27, p 2005–2011

    Article  Google Scholar 

  17. F. Heringhaus, H. Schneider-Muntau, and G. Gottstein, Analytical Modeling of the Electrical Conductivity of Metal Matrix Composites: Application to Ag-Cu and Cu-Nb, Mater. Sci. Eng. A, 2003, 347, p 9–20

    Article  Google Scholar 

  18. K.M. Liu, D.P. Lu, H.T. Zhou, A. Atrens, J. Zou, Y.L. Yang, and S.M. Zeng, Effect of Ag Micro-alloying on the Microstructure and Properties of Cu-14Fe In Situ Composite, Mater. Sci. Eng. A, 2010, 527, p 4953–4958

    Article  Google Scholar 

  19. K.M. Liu, D.P. Lu, H.T. Zhou, Z.B. Chen, A. Atrens, and L. Lu, Influence of a High Magnetic Field on the Microstructure and Properties of a Cu-Fe-Ag In Situ Composite, Mater. Sci. Eng. A, 2013, 584, p 114–120

    Article  Google Scholar 

  20. H. Gao, J. Wang, D. Shu, and B. Sun, Microstructure and Properties of Cu-11Fe-6Ag In Situ Composite After Thermo-Mechanical Treatments, J. Alloys Compd., 2007, 438, p 268–273

    Article  Google Scholar 

  21. L.M. Peng, X.M. Mao, K.D. Xu, and W.J. Ding, Property and Thermal Stability of In Situ Composite Cu-Cr Alloy Contact Cable, J. Mater. Process. Technol., 2005, 166, p 193–198

    Article  Google Scholar 

  22. K.M. Liu, D.P. Lu, H.T. Zhou, Y.L. Yang, A. Atrens, and J. Zou, Microstructure and Properties of a Deformation-Processed Cu-Cr-Ag In Situ Composite by Directional Solidification, J. Mater. Eng. Perform., 2013, 22, p 3723–3727

    Article  Google Scholar 

  23. J.S. Song, H.S. Kim, C.T. Lee, and S.I. Hong, Deformation Processing and Mechanical Properties of Cu-Cr-X (X = Ag or Co) Microcomposites, J. Mater. Process. Technol., 2002, 130–131, p 272–277

    Article  Google Scholar 

  24. K.M. Liu, Z.Y. Jiang, J.W. Zhao, J. Zou, Z.B. Chen, and D.P. Lu, Effect of Directional Solidification Rate on the Microstructure and Properties of Deformation-Processed Cu-7Cr-0.1Ag In Situ Composites, J. Alloys Compd., 2014, 612, p 221–226

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (51461018), the International Science and Technology Cooperation Project of Jiangxi Province (20151BDH80006), the Key Program of Natural Science Foundation of Jiangxi Province (20133BAB20008; 20144ACB20013), the Science and Technology Innovation Team Project of Jiangxi Province (20115BCB29018), and the China Scholarship Council (2011836024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keming Liu or Zhengyi Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Jiang, Z., Zhou, H. et al. Effect of Heat Treatment on the Microstructure and Properties of Deformation-Processed Cu-7Cr In Situ Composites. J. of Materi Eng and Perform 24, 4340–4345 (2015). https://doi.org/10.1007/s11665-015-1747-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1747-z

Keywords

Navigation