Skip to main content
Log in

Dendritic Growth and Microstructure Evolution with Different Cooling Rates in Ti48Al2Cr2Nb Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The influence of cooling rates on the dendritic growth and microstructure evolution of Ti48Al2Cr2Nb alloy is studied by electromagnetic levitation combined with copper mold casting. The different cooling rates of the conical as-cast sample with diameters from 4.7 to 0.8 mm were calculated by ANSYS software. The results show that primary dendrite arm spacing decreases with increase in cooling rate. Peritectic transformation (L + β → α) and the transformation of α → (α2 + γ) are restrained at cooling rate of 2.3 × 104 K s−1. With further increase in cooling rate (2.6 × 104 K s−1), a fine and homogeneous microstructure can be observed in the conical casting sample with the diameter of 0.8 mm. It consists of a large amount of massive γ phase, lath-like γ phase, and only few lamellar structures (α2 + γ). The formation of the microstructure in the alloy is attributed to the strong chilling, giving rise to the high undercooling and the high dislocation density during rapid solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.H. Wu, Review of Alloy and Process Development of TiAl Alloys, Intermetallics, 2006, 14, p 1114–1122

    Article  Google Scholar 

  2. F. Appel, J.D.H. Paul, and M. Oehring, Gamma Titanium Aluminide Alloys, Science and Technology Wiley, Weinheim, 2011, p 1–20

    Book  Google Scholar 

  3. Z.G. Liu, L.H. Chai, Y.Y. Chen, and F.T. Kong, Development of Rapidly Solidified Titanium Aluminide Compounds, Acta Metall., 2008, 44, p 569–573

    Google Scholar 

  4. L.C. Zhuo, S.J. Pang, H. Wang, and T. Zhang, Effect of Cooling Rate on Microstructure and Mechanical Properties of Rapidly Solidified Al-Based Bulk Alloys, J. Alloys Compd., 2010, 504S, p S117–S122

    Article  Google Scholar 

  5. L.Y. Sheng, W. Zhang, J.T. Guo, L.Z. Zhou, and H.Q. Ye, Microstructure Evolution and Mechanical Properties’ Improvement of NiAl-Cr(Mo)-Hf Eutectic Alloy During Suction Casting and Subsequent HIP Treatment, Intermetallics, 2009, 17, p 1115–1119

    Article  Google Scholar 

  6. C.D. Anderson, W.H. Hofmeisiter, and R.J. Bayuzick, Solidification Kinetics and Metastable Phase Formation in Binary Ti-Al, Metall. Trans. A, 1992, 23A, p 2699–2714

    Article  Google Scholar 

  7. O. Shuleshova, T.G. Woodcock, H.G. Lindenkreuz, R. Hermann, W. Löser, and B. Büchner, Metastable Phase Formation in Ti-Al-Nb Undercooled Melts, Acta Mater., 2007, 55, p 681–689

    Article  Google Scholar 

  8. W. Löser, H.G. Lindenkreuz, R. Hermann, O. Shuleshova, and T.G. Woodcock, Recalescence Behaviour of Binary Ti-Al and Ternary Ti-Al-Nb Undercooled Melts, Mater. Sci. Eng. A, 2005, 413, p 398–402

    Article  Google Scholar 

  9. Y.H. Zhou, Z.Q. Hu, and W.Q. Jie, Solidification Technology, China Machine Press, Beijing, 1998, p 227–244

    Google Scholar 

  10. Z.G. Liu, L.H. Chai, Y.Y. Chen, F.T. Kong, H.A. Davies, and I.A. Figueroa, Microstructure Evolution in Rapidly Solidified Y Added TiAl Ribbons, Intermetallics, 2011, 19, p 160–164

    Article  Google Scholar 

  11. Z.G. Liu, Effect of Cooling Rate and Y Element on the Microstructure of Rapidly Solidified TiAl Alloys, J. Alloys Compd., 2010, 504S, p S491–S495

    Article  Google Scholar 

  12. Z.G. Liu, Y.Y. Chen, L.H. Chai, F.T. Kong, and H.A. Davies, Production and Characterization of TiAl Ribbons with Y Additions, Trans. Nonferrous Met. Soc. China, 2006, 16, p s711–s714

    Article  Google Scholar 

  13. H.W. Wang, D.D. Zhu, C.M. Zou, and Z.J. Wei, Microstructure and Nanohardness of Ti-48%Al Alloy Prepared by Rapid Solidification Under Different Cooling Rates, Trans. Nonferrous Met. Soc. China, 2011, 21, p s328–s332

    Article  Google Scholar 

  14. L.H. Chai, Microstructral Evolution of Rapidly Solidified TiAl Based Alloys, PhD thesis, Harbin Institute of Technology, Harbin, 2010

  15. X.F. Ding, J.P. Lin, H. Qi, L.Q. Zhang, X.P. Song, and G.L. Chen, Microstructure Evolution of Directionally Solidified Ti-45Al-8.5Nb-(W, B, Y) Alloys, J. Alloys Compd., 2011, 509, p 4041–4046

    Article  Google Scholar 

  16. J.L. Fan, X.Z. Li, Y.Q. Su, R.R. Chen, J.J. Guo, and H.Z. Fu, Microstructure Evolution of Directionally Solidified Ti-46Al-0.5W-0.5Si alloy, J. Cryst. Growth, 2011, 337, p 52–59

    Article  Google Scholar 

  17. J. Lapin and Z. Gabalcová, Solidification Behaviour of TiAl-Based Alloys Studied by Directional Solidification Technique, Intermetallics, 2011, 19, p 797–804

    Article  Google Scholar 

  18. J.L. Fan, X.Z. Li, Y.Q. Su, J.J. Guo, and H.Z. Fu, Effect of Growth Rate on Microstructure Parameters and Microhardness in Directionally Solidified Ti-49Al Alloy, Mater. Des., 2012, 34, p 552–558

    Article  Google Scholar 

  19. D.M. Stefanescu, Science and Engineering of Casting Solidification, 2nd ed., Springer, Columbus, 2009, p 177–181

    Google Scholar 

  20. J.S. Kirkaldy and D. Venugopalan, Pattern Selection Relations for Deep-Rooted Binary Alloy Cells, Scr. Mater., 1989, 23, p 1603–1608

    Google Scholar 

  21. D. Bouchard and J.S. Kirkaldy, Prediction of Dendrite Arm Spacings in Unsteady-and Steady-State Heat Flow of Unidirectionally Solidified Binary Alloys, Metall. Mater. Trans. B, 1997, 28B, p 651–663

    Article  Google Scholar 

  22. M. Paliwal and I.H. Jung, The Evolution of the Growth Morphology in Mg–Al Alloys Depending on the Cooling Rate During Solidification, Acta Mater., 2013, 61, p 4848–4860

    Article  Google Scholar 

  23. U. Böyük and N. Maraşlı, The Microstructure Parameters and Microhardness of Directionally Solidified Sn-Ag-Cu Eutectic Alloy, J. Alloys Compd., 2009, 485, p 264–269

    Article  Google Scholar 

  24. G.L. Chen, X.J. Xu, Z.K. Teng, Y.L. Wang, and J.P. Lin, Microsegregation in High Nb Containing TiAl Alloy Ingots Beyond Laboratory Scale, Intermetallics, 2007, 15, p 625–631

    Article  Google Scholar 

  25. Y.Q. Liu, W.T. Xu, D. Xie, and Z.M. Li, Phase Diagram Calculations of Al-Cr-Nb-Ti Quaternary System, Mater. Res. Innovations, 2014, 18, p 573–578

    Article  Google Scholar 

  26. Z. Xiao, L. Zheng, J. Yan, L. Yang, and H. Zhang, Lamellar Orientations and Growth Directions of β Dendrites in Directionally Solidified Ti-47Al-2Cr-2Nb Alloy, J. Cryst. Growth, 2011, 324, p 309–313

    Article  Google Scholar 

  27. R.M. Imayev, V.M. Imayev, M. Oehring, and F. Appel, Alloy Design Concepts for Refined Gamma Titanium Aluminide Based Alloys, Intermetallics, 2007, 15, p 451–460

    Article  Google Scholar 

  28. P.X. Fu, X.H. Kang, Y.C. Ma, K. Liu, D.Z. Li, and Y.Y. Li, Centrifugal Casting of TiAl Exhaust Valves, Mater. Sci. Eng. A, 1997, 239–240, p 570–576

    Google Scholar 

  29. K.B. Bisen, M. Arenas, N. El-Kaddah, and V.L. Acoff, Computation and Validation of Weld Pool Dimensions and Temperature Profiles for Gamma TiAl, Metall. Mater. Trans. A, 2003, 34A, p 2273–2279

    Article  Google Scholar 

  30. O. Shuleshova, D. Holland-Moritz, W. Löser, A. Voss, H. Hartmann, U. Hecht, V.T. Witusiewicz, D.M. Herlach, and B. Büchner, In Situ Observations of Solidification Processes in γ-TiAl Alloys by Synchrotron Radiation, Acta Mater., 2010, 58, p 2408–2418

    Article  Google Scholar 

  31. D.D. Zhu, H.W. Wang, J.Q. Qi, C.M. Zou, and Z.J. Wei, Effect of Cr Addition on Microstructures and Nanohardness of Rapidly Solidified Ti-48Al Alloy, Mater. Sci. Technol., 2012, 28, p 1385–1390

    Article  Google Scholar 

  32. D. Daloz, U. Hecht, J. Zollinger, H. Combeau, A. Hazotte, and M. Založnik, Microsegregation, Macrosegregation and Related Phase Transformations in TiAl Alloys, Intermetallics, 2011, 19, p 749–756

    Article  Google Scholar 

  33. S.R. Dey, A. Hazotte, and E. Bouzy, Crystallography and Phase Transformation Mechanisms in TiAl-Based Alloys—A Synthesis, Intermetallics, 2009, 17, p 1052–1064

    Article  Google Scholar 

  34. X.Z. Li, J.L. Fan, Y.Q. Su, D.M. Liu, J.J. Guo, and H.Z. Fu, Lamellar Orientation and Growth Direction of α Phase in Directionally Solidified Ti-46Al-0.5W-0.5Si Alloy, Intermetallics, 2012, 27, p 38–45

    Article  Google Scholar 

  35. L. Xie, Y. Liu, Y.T. Wang, J. Zheng, and X.G. Li, Superior Hydrogen Storage Kinetics of MgH2 Nanoparticles Doped with TiF3, Acta Mater., 2007, 55, p 4585–4591

    Article  Google Scholar 

  36. J.S. Pan, J.M. Tong, and M.B. Tian, Material Science Foundation, Peking University Press, Beijing, 2011, p 550–659

    Google Scholar 

  37. S.A. Maloy and G.T. Gray, High Strain Rate Deformation of Ti-48Al-2Nb-2Cr, Acta Mater., 1996, 44, p 1741–1756

    Article  Google Scholar 

  38. S.Y. Zhou, R. Hu, J.S. Li, H. Chang, H.C. Kou, and L. Zhou, Stress Induced Deformation in the Solidification of Undercooled Co80Pd20 Alloys, Mater. Sci. Eng. A, 2011, 3, p 973–977

    Article  Google Scholar 

  39. X.L. Xu, Y.Z. Chen, and F. Liu, Study of Microstrain in Rapidly Solidified Structures of Hypercooled Co80Pd20 Alloys, Mater. Sci. Technol., 2013, 29, p 117–120

    Article  Google Scholar 

Download references

Acknowledgment

The author would like to acknowledge the financial support from the National Basic Research Program of China (No. 2011CB605503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Hu, R., Zhang, T. et al. Dendritic Growth and Microstructure Evolution with Different Cooling Rates in Ti48Al2Cr2Nb Alloy. J. of Materi Eng and Perform 25, 38–45 (2016). https://doi.org/10.1007/s11665-015-1696-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1696-6

Keywords

Navigation