Skip to main content

Advertisement

Log in

Finite Element Analysis of a Copper Single Crystal Shape Memory Alloy-Based Endodontic Instruments

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The aim of the present paper is the development of endodontic Cu-based single crystal Shape Memory Alloy (SMA) instruments in order to eliminate the antimicrobial and mechanical deficiencies observed with the conventional Nickel-Titane (NiTi) SMA files. A thermomechanical constitutive law, already developed and implemented in a finite element code by our research group, is adopted for the simulation of the single crystal SMA behavior. The corresponding material parameters were identified starting from experimental results for a tensile test at room temperature. A computer-aided design geometry has been achieved and considered for a finite element structural analysis of the endodontic Cu-based single crystal SMA files. They are meshed with tetrahedral continuum elements to improve the computation time and the accuracy of results. The geometric parameters tested in this study are the length of the active blade, the rod length, the pitch, the taper, the tip diameter, and the rod diameter. For each set of adopted parameters, a finite element model is built and tested in a combined bending-torsion loading in accordance with ISO 3630-1 norm. The numerical analysis based on finite element procedure allowed purposing an optimal geometry suitable for Cu-based single crystal SMA endodontic files. The same analysis was carried out for the classical NiTi SMA files and a comparison was made between the two kinds of files. It showed that Cu-based single crystal SMA files are less stiff than the NiTi files. The Cu-based endodontic files could be used to improve the root canal treatments. However, the finite element analysis brought out the need for further investigation based on experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.M. Walia, W.A. Brantley, and H. Gerstein, An Initial Investigation of the Bending and Torsional Properties of Nitinol Root Canal Files, J. Endod., 1988, 14(7), p 346–351

    Article  Google Scholar 

  2. R.B. Kazemi, E. Stenman, and L.S.W. Spanberg, A Comparison of Stainless Steel and Nickel Titanium H-Type Instruments of Identical Design: Torsionnal and Bending Tests, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2000, 90(4), p 500–506

    Article  Google Scholar 

  3. E. Saunders, Hand Instrumentation in Root Canal Preparation, Endod. Topics., 2005, 10, p 163–167

    Article  Google Scholar 

  4. J. Tepel, E. Schäfer, and W. Hoppe, Properties of Endodontic Hand Instruments Used in Rotary Motion. Part 3: Resistance to Bending and Fracture, J. Endod., 1997, 23(3), p 141–145

    Article  Google Scholar 

  5. J. Tepel and E. Schäfer, Endodontic Hand Instruments: Cutting Efficiency, Instrumentation of Curved Canals, Bending and Torsional Properties, Endod. Dent. Traumatol., 1997, 13(5), p 201–210

    Article  Google Scholar 

  6. P.T. Esposito and C.J. Cunningham, A Comparison of Canal Preparation with Nickel-Titanium and Stainless Steel Instruments, J. Endod., 1995, 21(4), p 173–176

    Article  Google Scholar 

  7. J.A. Samyn, J.I. Nicholls, and J.C. Steiner, Instruments in Molar Root Preparation, J. Endod., 1996, 22(4), p 177–189

    Article  Google Scholar 

  8. C. Glosson, R. Haller, S. Dove, and C.E. del Rio, A Comparison of Root-Canal Preparations Using NiTi Hand, NiTi Engine-Driven, and K-Flex Endodontic Instruments, J. Endod., 1995, 21(3), p 146–151

    Article  Google Scholar 

  9. J. Short, L. Morgan, and J. Baumgartner, A Comparison of Canal Centering Ability of Four Instrumentation Techniques, J. Endod., 1997, 23(8), p 503–507

    Article  Google Scholar 

  10. C. Schrader, M. Ackermann, and F. Barbakow, Step-by-Step Description of a Rotary Root Canal Preparation Technique, Int. Endod. J., 1999, 32(4), p 312–320

    Article  Google Scholar 

  11. D. Entemeyer, E. Patoor, A. Eberhardt, and M. Berveiller, Strain Rate Sensitivity in Superelasticity, Int. J. Plast., 2000, 16, p 1269–1288

    Article  Google Scholar 

  12. K. Otsuka, C. Wayman, K. Nakai, H. Sakamoto, and K. Shimizu, Superelasticity Effects and Stress-Induced Martensitic Transformations in Cu-Al-Ni Alloy, Acta Metall., 1976, 24(3), p 207–226

    Article  Google Scholar 

  13. E. Gautier and E. Patoor, Experimental Observations for Shape Memory Alloys and Transformation Induced Plasticity Phenomena, Mechanics of Solids with Phase Changes, International Centre for Mechanical Sciences, Courses and Lectures, Vol 7, Springer, Berlin, 1997, p 69–103

    Google Scholar 

  14. M. Chaves Craveiro de Melo, M. Guiomar de Azevedo Bahia, and V.T. Lopes Buono, Fatigue Resistance of Engine-Driven Rotary Nickel-Titanium Endodontic Instruments, J. Endod., 2002, 28(11), p 765–769

    Article  Google Scholar 

  15. Y.P. Pruett, D.J. Clement, and D.L. Carns, Cyclic Fatigue Testing of Nickel-Titanium, J. Endod., 1997, 23(2), p 77–85

    Article  Google Scholar 

  16. E. Schäfer, A. Dzepina, and G. Danesh, Bending Properties of Rotary Nickel-Titanium Instruments, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2003, 96(6), p 757–763

    Article  Google Scholar 

  17. Y. Haïkel, R. Serfaty, G. Bateman, B. Senger, and C. Allemann, Dynamic and Cyclic Fatigue of Engine-Driven Rotary Nickel-Titanium Endodontic Instruments, J. Endod., 1999, 25(6), p 434–440

    Article  Google Scholar 

  18. C. Schrader and O.A. Peters, Analysis of Torque and Force with Differently Tapered Rotary Endodontic Instruments In Vitro, J. Endod., 2005, 31(2), p 120–123

    Article  Google Scholar 

  19. G. Grass, C. Rensing, and M. Solioz, Metallic Copper as an Antimicrobial Surface, Appl. Environ. Microbiol., 2011, 77(5), p 1541–1547

    Article  Google Scholar 

  20. J.V. Prado, A.R. Vidal, and T.C. Durán, Application of Copper Bactericidal Properties in Medical Practice, Rev. Med. Chile, 2012, 140(10), p 1325–1332

    Article  Google Scholar 

  21. S.L. Warnes and C.W. Keevil, Mechanism of Copper Surface Toxicity in Vancomycin-Resistant Enterococci Following Wet or Dry Surface Contact, Appl. Environ. Microbiol., 2011, 77(17), p 6049–6059

    Article  Google Scholar 

  22. P.M. Wasmer, G. Mussot-Hoinard, and S. Berveiller, Kinetics of Precipitation and Mechanical Behavior of CuAlBe Single Crystal Drawn-Wires, ESOMAT, 2009

  23. Y. Chemisky, A. Duval, E. Patoor, and T. Ben Zineb, Constitutive Model for Shape Memory Alloys Including Phase Transformation, Martensitic Reorientation and Twins Accommodation, Mech. Mater., 2011, 43(7), p 361–376

    Article  Google Scholar 

  24. A. Duval, “Modélisation du comportement thermomécanique d’alliages à mémoire de forme. Application au dimensionnement de microsystèmes et extension en non local,” Ph.D. Thesis, Metz University, 2009

  25. Y. Chemisky, “Modélisation du comportement macroscopique des alliages à mémoire de forme – Application aux matériaux composites,” Ph.D. Thesis, Metz University, 2011

  26. H.C. Kim, H.J. Kim, C.J. Lee, B.M. Kim, J.K. Park, and A. Versluis, Mechanical Response of Nickel-Titanium Instruments with Different Cross-Sectional Designs During Shaping of Simulated Curved Canals, Int. Endod. J., 2009, 42(7), p 593–602

    Article  Google Scholar 

  27. B. Peultier, T. Ben Zineb, and E. Patoor, Macroscopic Constitutive Law of Shape Memory Alloy Thermomechanical Behaviour. Application to Structure Computation by FEM, Mech. Mater., 2006, 38(5–6), p 510–524

    Article  Google Scholar 

  28. ISO 3630-1, Dentistry—Root-Canal Instruments—Part 1: General Requirements and Test Methods, ISO, Geneva, 2008

  29. M.A. Baumann and A. Roth, Effect of Experience on Quality of Canal Preparation with Rotary Nickel-Titanium Files, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 1999, 88(6), p 714–718

    Article  Google Scholar 

  30. M.G. Bahia and V.T. Buono, Decrease in the Fatigue Resistance of Nickel-Titanium Rotary Instruments After Clinical Use in Curved Root Canals, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2005, 100(2), p 249–255

    Article  Google Scholar 

  31. D. Fife, G. Gambarini, and L.R. Britto, Cyclic Fatigue Testing of ProTaper NiTi Rotary Instruments After Clinical Use, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2004, 97(2), p 251–256

    Article  Google Scholar 

  32. B. Sattapan, J.E. Palamara, and H.H. Messer, Torque During Canal Instrumentation Using Rotary Nickel Titanium Files, J. Endod., 2000, 26(3), p 156–160

    Article  Google Scholar 

  33. H. Schilder, Cleaning and Shaping the Root Canal, Dent. Clin. N. Am., 1974, 18(2), p 269–296

    Google Scholar 

  34. E. Schäfer, U. Schulz-Bongert, and G. Tulus, Comparison of Hand Stainless Steel and Nickel Titanium Rotary Instrumentation: A Clinical Study, J. Endod., 2004, 30(6), p 432–435

    Article  Google Scholar 

  35. M.K. Wu and P.R. Wesselink, Efficacy of Three Techniques in Cleaning the Apical Portion of Curved Root Canals, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 1995, 79(4), p 492-96

  36. L.J. Albrecht, J.C. Baumgartner, and J.G. Marshall, Evaluation of Apical Debris Removal Using Various Sizes and Tapers of ProFile GT Files, J. Endod., 2004, 30(6), p 425–428

    Article  Google Scholar 

  37. P. Gianluca, N.M. Grande, L. Tocci, L. Testarelli, and G. Gambarini, Influence of Different Apical Preparations on Root Canal Cleanliness in Human Molars: A SEM Study, J. Oral Maxillofac. Res., 2014, 5(2), p e4

    Google Scholar 

  38. C. Suneelkumar, C. Savarimalai-Karumaran, S. Ramachandran, R. Indira, P. Shankar, and A. Kumar, A Comparative Study on the Shaping Ability of k3, Profile and Protaper Instruments in Simulated Curved Root Canals, Iran. Endod. J., 2010, 5(3), p 107–112

    Google Scholar 

  39. C.C. Ferraz, N.V. Gomes, B.P. Gomes, A.A. Zaia, F.B. Teixeira, and F.J. Souza-Filho, Apical Extrusion of Debris and Irrigants Using Two Hand and Three Engine-Driven Instrumentation Techniques, Int. Endod. J., 2001, 34(5), p 354–358

    Article  Google Scholar 

  40. H. Bidar, A.F. Rastegar, P. Ghaziani, and M.S. Namazikhah, Evaluation of Apically Extruded Debris in Conventional and Rotary Instrumentation Techniques, J. Calif. Dent. Assoc., 2004, 32(9), p 665–671

    Google Scholar 

  41. A. Kustarci, K.E. Akpinar, and K. Er, Apical Extrusion of Intracanal Debris and Irrigant Following Use of Various Instrumentation Techniques, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2008, 105(2), p 257–262

    Article  Google Scholar 

  42. N.M. Akhlaghi, B. Dadresanfar, S. Darmiani, and A. Moshari, Effect of Master Apical File Size and Taper on Irrigation and Cleaning of the Apical Third of Curved Canals, J. Dent. (Tehran), 2014, 11(2), p 188–195

    Google Scholar 

  43. D. Quaranta, T. Krans, C. Espirito Santo, C.G. Elowsky, D.W. Domaille, C.J. Chang, and G. Grass, Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces, Appl. Environ. Microbiol., 2011, 77(2), p 416–426

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor M. Ganapathi for his valuable help in writing this paper. We thank Dr. M. Engels-Deutsch for his co-direction in this study. This study was partly supported by Micro-Mega® (Besançon, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Vincent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincent, M., Thiebaud, F., Bel Haj Khalifa, S. et al. Finite Element Analysis of a Copper Single Crystal Shape Memory Alloy-Based Endodontic Instruments. J. of Materi Eng and Perform 24, 4128–4139 (2015). https://doi.org/10.1007/s11665-015-1677-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1677-9

Keywords

Navigation