Mechanical and Numerical Analysis Concerning Compressive Properties of Tin-Lead Open-Cell Foams


The design of new or innovative materials has to meet two essential criteria: increased mechanical performance and minimization of the mass. This dual requirement leads to interest in the study of various classes of metallic foams. The actual research is focused on open-cell Tin-Lead foams manufactured by replication process using NaCl preform. A mechanical press equipped with a load cell and a local extensometer with a controlled deformation rate is used. Experimental tests were carried out in order to study the influences of both the cell size and of the relative density on the mechanical behavior during a compression deformation and to analyze the obtained properties variation within a new framework. This study has three main sections which start with the manufacturing description and mechanical characterization of the proposed metallic foams followed by the understanding and modeling of their response to a compression load via a Gibson-Ashby model, a Féret law, a proposed simple Avrami model, and a generalized Avrami model. Finally, an exposition of a numerical simulation analyzing the compression of the Sn-Pb foams concerning the variation of the relative densities with respect to the plastic strain is proposed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20


  1. 1.

    A. Burteau, F. N’Guyen, J.D. Bartout, S. Forest, Y. Bienvenu, S. Saberi, and D. Naumann, Impact of Material Processing and Deformation on Cell Morphology and Mechanical Behavior of Polyurethane and Nickel Foams, Int. J. Solids Struct., 2012, 49, p 2714–2732

    Article  Google Scholar 

  2. 2.

    L. Lefebvre, J. Banhart, and D. Dunand, Porous Metals and Metallic Foams: Current Status and Recent Developments, Adv. Eng. Mater., 2008, 10, p 775–787

    Article  Google Scholar 

  3. 3.

    Binchao Li, Guiping Zhao, and Lu Tian Jian, A Double Degree Freedom Mass-Spring-Damper-Foam Collision Model for High Porosity Metallic Foams, ASME-J. Appl. Mech., 2012, 79, p 1021–1033

    Google Scholar 

  4. 4.

    I. Duarte, M. Vesenjak, and L. Krstulovic-Opara, Dynamic And Quasi-Static Bending Behaviour of Thin-Walled Aluminium Tubes Filled With Aluminium Foam, Compos. Struct., 2014, 109, p 48–56

    Article  Google Scholar 

  5. 5.

    Ji Chan Park, Nam Sun Roh, Dong Hyun Chun, Heon Jung, and Jung-II, Yang, Cobalt Catalyst Coated Metallic Foam and Heat-Exchanger Type Reactor for Fischer-Tropsch Synthesis, Fuel Process. Technol., 2014, 119, p 60–66

    Article  Google Scholar 

  6. 6.

    J. Banhart, Manufacture, Characterization and Application of Cellular Metals and Metal Foams, Prog. Mater Sci., 2001, 46, p 559–632

    Article  Google Scholar 

  7. 7.

    C. San Marchi and A. Mortensen, Deformation of Open-Cell Aluminum Foam, Acta Mater., 2001, 49, p 3959–3969

    Article  Google Scholar 

  8. 8.

    S. Akiyama, H. Ueno, K. Imagawa, A.A. Kitahara, S. Nagata, K. Morimoto, T. Nishikawa, M. Itoh, Foamed Metal and Method of Producing Same, US Patent 4 713 277 (1987).

  9. 9.

    I. Jin, L.D. Kenny, H. Sang, Method of producing lightweight foamed metal, US Patent 4 973 358 (1990).

  10. 10.

    I. Jin, L.D. Kenny, H. Sang, Stabilized Metal Foam Body, US Patent 5 112 697 (1992).

  11. 11.

    W.W. Ruch, B. Kirkevag, Patent WO, 9101 387 (1991).

  12. 12.

    M. Peroni, G. Solomos, and V. Pizzinato, Impact Behaviour Testing of Aluminium Foam, Int. J. Impact Eng, 2013, 53, p 74–83

    Article  Google Scholar 

  13. 13.

    L. Polinski, S. Lipson, and H. Markus, Lightweight Cellular Metal, Modern Cast, 1961, 39, p 57–71

    Google Scholar 

  14. 14.

    S.R.E. Casolco, G. Dominquez, D. Sandoval, and J.E. Garay, Processing and Mechanical Behavior of Zn-Al-Cu Porous Alloys, Mater Sci Eng, 2007, 471A, p 28–33

    Article  Google Scholar 

  15. 15.

    A. Belhadj, S.A. Kaoua, M. Azzaz, J.D. Bartout, and Y. Bienvenu, Elaboration and Characterization of Metallic Foams Based on Tin-Lead, Mater. Sci. Eng. A, 2008, 494, p 425–428

    Article  Google Scholar 

  16. 16.

    A. Belhadj, A. Gavrus, M. Azzaz, F. Bernard (2013) Mechanical Properties Characterization of Tin-Lead Open-Cell Foams using Upsetting Experimental Tests and Finite Elements Modelling, International Conference on Advanced Manufacturing Engineering and Technologies Stockholm, Sweden, NEWTECH 2013, pp. 25–34.

  17. 17.

    T. Wierzbicki and M. Doyoyo, Determination of the Local Stress-Strain Response of Foams, ASME-J Appl Mech, 2003, 70, p 204–211

    Article  Google Scholar 

  18. 18.

    L.J. Gibson and M.F. Ashby, Cellular Solids, Structure and Properties, 2nd ed., Cambridge Univ. Press, UK, 1997

    Google Scholar 

  19. 19.

    M. Avrami, Kinetics of Phase Change. I. General Theory, J Chem Phys, 1939, 12, p 1103–1112

    Article  Google Scholar 

  20. 20.

    A. Gavrus (1996) Automatic Identification of Rheological Parameters using Inverse Analysis, PhD thesis, ENSMP France.

  21. 21.

    D.M. Walukas, Internal Report, USP Holdings, Ann Arbor, MI, 1992

    Google Scholar 

  22. 22.

    A.E. Simone and L.J. Gibson, The Tensile Strength Of Porous Copper Made By The Gasar Process, Acta Mater., 1996, 44, p 1437–1447

    Article  Google Scholar 

  23. 23.

    Masataka Hakamada, Yuuki Asao, Tetsumune Kuromura, Youqing Chen, Hiromu Kusuda, and Mamoru Mabuchi, Density Dependence of the Compressive Properties of Porous Copper Over a Wide Density Range, Acta Mater., 2007, 55, p 2291–2299

    Article  Google Scholar 

  24. 24.

    Jessica C. Li and David C. Dunan, Mechanical Properties of Directionally Freeze-Cast Titanium Foams, Acta Mater., 2011, 59, p 146–158

    Article  Google Scholar 

  25. 25.

    T. Daxner, H.J. Böhm, and F.G. Rammerstorfer, Mesoscopic Simulation of Inhomogeneous Metallic Foams with Respect to Energy Absorption, Comput. Mater. Sci., 1999, 16, p 61–69

    Article  Google Scholar 

  26. 26.

    G.V. Brook and E.A. Brandes, Smithels Metals Handbook, 7th ed., Butterworths, London, 1992

    Google Scholar 

  27. 27.

    T.B. Massalski, Binary Phase Diagrams, ASM International, Materials Park, OH, 1990

    Google Scholar 

  28. 28.

    A.E. Simone and L.J. Gibson, Aluminium Foams Produced by Liquid-State Processes, Acta Mater., 1998, 46, p 3109–3123

    Article  Google Scholar 

  29. 29.

    A.E. Simone and L.J. Gibson, Effects of Solid Distribution on the Stiffness and Strength of Metallic Foams, Acta Mater., 1998, 46, p 2139–2150

    Article  Google Scholar 

  30. 30.

    A.E. Simone and L.J. Gibson, The Effects of Cell Face Curvature and Corrugations on the Stiffness and Strength of Metallic Foams, Acta Mater., 1998, 46, p 3929–3935

    Article  Google Scholar 

  31. 31.

    N. Narayanan and K. Ramamurthy, Structure and Properties of Aerated Concrete: A Review, Cem. Concr. Res., 2000, 22, p 321–329

    Article  Google Scholar 

  32. 32.

    Abaqus v.6.9. (2009) Documentation, User’s Manual—Part V: Materials.

  33. 33.

    S. Li, Z. Wang, G. Wu, L. Zhao, and X. Li, Dynamic Response of Sandwich Spherical Shell with Graded Metallic Foam Cores Subjected to Blast Loading, Composites: Part A, 2014, 56, p 262–271

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Fabrice Bernard.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belhadj, AE., Gavrus, A., Bernard, F. et al. Mechanical and Numerical Analysis Concerning Compressive Properties of Tin-Lead Open-Cell Foams. J. of Materi Eng and Perform 24, 4140–4155 (2015).

Download citation


  • finite element modeling
  • mechanical response
  • metallic foams
  • open-cell
  • plateau stress versus relative density relationships