Skip to main content

Friction Stir Welding of Steel: Heat Input, Microstructure, and Mechanical Property Co-relation

Abstract

Friction stir welding was performed to join carbon steel plates at tool rotational rate of 800-1400 rpm. Microstructure and microhardness of welded specimens were evaluated across weld centerline. Torque base index, peak temperature, cooling rate, strain, strain rate, volumetric material flow rate, and width of extruded zone at weld nugget were calculated. Peak temperature at weld nugget was ~1300-1360 K. At this temperature, ferrite transformed to austenite during welding. Austenite was decomposed in to ferrite and bainite at cooling rate of ~4-7.5 K/s. The presence of bainite was endorsed by increment in microhardness with respect to base material. Ferrite grain size at weld nugget was finer in comparison to as-received alloy. With the increment in tool rotational rate strain, strain rate, total heat input, and peak temperature at weld nugget were increased. High temperature at weld nugget promoted increment in ferrite grain size and reduction in area fraction of bainite. Heat-affected zone also experienced phase transformation and exhibited enhancement in ferrite grain size in comparison to base alloy at all welding parameters with marginal drop in microhardness. Maximum joint strength was obtained at the tool rotational rate of 1000 rpm. Increment in tool rational rate reduced the joint efficiency owing to increment in ferrite grain size and reduction in pearlite area fraction at heat-affected zone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    S. Fukumoto, H. Tsubakino, K. Pkita, M. Aritoshi, and T. Tomita, Microstructure of Friction Weld Interface of 1050 Aluminium to Austenitic Stainless Steel, Mater. Sci. Technol., 1998, 14, p 333–338

    Article  Google Scholar 

  2. 2.

    R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. Rep., 2005, 50, p 1–78

    Article  Google Scholar 

  3. 3.

    C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton, Effects of Friction Stir Welding on Microstructure of 7075 Aluminum, Scr. Mater., 1997, 36, p 69–75

    Article  Google Scholar 

  4. 4.

    G. Liu, L.E. Murr, C.S. Niou, J.C. McClureand, and F.R. Vega, Microstructural Aspects of the Friction-Stir weldIng of 6061-T6 Aluminum, Scr. Mater., 1997, 37, p 355–361

    Article  Google Scholar 

  5. 5.

    L. Shi, C.S. Wu, and H.J. Liu, Numerical Analysis of Heat Generation and Temperature Field in Reverse Dual-Rotation Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2014, 74, p 319–334

    Article  Google Scholar 

  6. 6.

    F. Legendre, S. Poissonnet, P. Bonnaillie, L. Boulanger, and L. Forest, Some Microstructural Characterizations in Friction Stir Welded Oxide Dispersion Strengthened Ferritic Steel Alloy, J. Nucl. Mater., 2009, 386–388, p 537–539

    Article  Google Scholar 

  7. 7.

    S. Spigarelli, M. Regev, M.E. Mehtedi, G. Quercetti, and M. Cabibbo, Analysis of the Effect of Eriction Stir Welding on the Minimum Creep Rate of an Mg-3% Al 1% Zn Alloy, Scr. Mater., 2011, 65, p 626–629

    Article  Google Scholar 

  8. 8.

    S. Mironov, Y. Zhang, Y.S. Sato, and H. Kokawa, Crystallography of Transformed Microstructure in Friction Stir Welded Ti-6Al-4V Alloy, Scr. Mater., 2008, 59, p 511–514

    Article  Google Scholar 

  9. 9.

    D. Wang, B.L. Xiao, Z.Y. Ma, and H.F. Zhang, Friction Stir Welding of Zr55Cu30Al10Ni5 Bulk Metallic Glass to Al–Zn–Mg–Cu Alloy, Scr. Mater., 2009, 60, p 112–115

    Article  Google Scholar 

  10. 10.

    Y.D. Chung, H. Fujii, R. Ueji, and N. Tsuji, Friction Stir Welding of High Carbon Steel with Excellent Toughness and Ductility, Scr. Mater., 2010, 63, p 223–226

    Article  Google Scholar 

  11. 11.

    S.H.C. Park, Y.S. Sato, and H. Kokawa, Effect of Micro-texture on Fracture Location in Friction Stir Weld of Mg Alloy AZ61 During Tensile Test, Scr. Mater., 2003, 49, p 161–166

    Article  Google Scholar 

  12. 12.

    S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, and M. Inagaki, Boride Formation Induced by pcBN Tool Wear in Friction-Stir-Welded Stainless Steel, Metall. Mater. Trans. A, 2009, 40A, p 625–636

    Article  Google Scholar 

  13. 13.

    H. Cho, S.H. Kang, S. Kim, K.H. Oh, H.J. Kim, W. Chang, and H.N. Han, Microstructural Evolution in Friction Stir Welding of High-Strength Linepipe Steel, Mater. Des., 2012, 34, p 258–267

    Article  Google Scholar 

  14. 14.

    T.J. Lienert, W.L. Stellwag, B.B. Grimmett, and R.W. Warke, Friction Stir Welding Studies on Mild Steel, Weld. Res. Suppl. Weld. J., 2003, 82, p 1–9

    Google Scholar 

  15. 15.

    M. Ghosh, K. Kumar, and R.S. Mishra, Friction Stir Lap Welded Advanced High Strength Steels: Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2011, 528, p 8111–8119

    Article  Google Scholar 

  16. 16.

    M. Ghosh, M.M. Hussain, and R.K. Gupta, Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Plain Carbon Steel, ISIJ Int., 2012, 52, p 477–482

    Article  Google Scholar 

  17. 17.

    R. Sarkar, M. Shome, and T.K. Pal, Microstructures and Properties of Friction Stir Spot Welded DP590 Dual Phase Steel Sheets, Sci. Technol. Weld. Join., 2014, 19, p 436–442

    Article  Google Scholar 

  18. 18.

    S.J. Barnes, A. Steuwer, S. Mahawish, R. Johnson, and P.J. Withers, Residual Strains and Microstructure Development in Single and Sequential Double Sided Friction Stir Welds in RQT-701 Steel, Mater. Sci. Eng. A, 2008, 492, p 35–44

    Article  Google Scholar 

  19. 19.

    A.P. Reynolds, W. Tang, M. Posada, and J. DeLoach, Friction Stir Welding of DH36 Steel, Sci. Technol. Weld. Join., 2003, 8, p 455–460

    Article  Google Scholar 

  20. 20.

    A. Ozekcin, H.W. Jin, J.Y. Koo, N.V. Bangaru, R. Ayer, G. Vaughn, R. Steel, and S. Packer, A Microstructural Study of Friction Stir Welded Joints of Carbon Steels, Int. J. Offshore Polar Eng., 2004, 14, p 284–288

    Google Scholar 

  21. 21.

    L. Cui, H. Fujii, N. Tsuji, and K. Nogi, Friction Stir Welding of a High Carbon Steel, Scr. Mater., 2007, 56, p 637–640

    Article  Google Scholar 

  22. 22.

    L. Cui, H. Fujii, N. Tsuji, K. Nakata, K. Nogi, R. Ikeda, and M. Matsushita, Transformation in Stir Zone of Friction Stir Welded Carbon Steels with Different Carbon Contents, ISIJ Int., 2007, 47, p 299–306

    Article  Google Scholar 

  23. 23.

    Y.S. Sato, H. Yamanoi, H. Kokawa, and T. Furuhara, Microstructural Evolution of Ultrahigh Carbon Steel During Friction Stir Welding, Scr. Mater., 2007, 57, p 557–560

    Article  Google Scholar 

  24. 24.

    S.J. Barnes, A.R. Bhatti, A. Steuwer, R. Johnson, J. Altenkirch, and P.J. Withers, Friction Stir Welding in HSLA-65 Steel: Part 1. Influence of Weld Speed and Tool Material on Microstructural Development, Metall. Mater. Trans. A, 2012, 43A, p 2342–2355

    Article  Google Scholar 

  25. 25.

    H. Fuji, L. Cui, N. Tsuji, M. Maeda, K. Nakata, and K. Nogi, Friction Stir Welding of Carbon Steels, Mater. Sci. Eng., 2006, A429, p 50–57

    Article  Google Scholar 

  26. 26.

    R. Ueji, H. Fujii, L. Cui, A. Nishioka, K. Kunishige, and K. Nogi, Friction Stir Welding of Ultrafine Grained Plain Low-Carbon Steel Formed by the Martensite Process, Mater. Sci. Eng. A, 2006, 423, p 324–330

    Article  Google Scholar 

  27. 27.

    M. Ghosh, K. Kumar, and R.S. Mishra, Process Optimization for Friction-Stir-Welded Martensitic Steel, Metal. Mater. Trans. A, 2012, 43A, p 1966–1975

    Article  Google Scholar 

  28. 28.

    M. Ghosh, K. Kumar, and R.S. Mishra, Analysis of Microstructural Evolution During Friction Stir Welding of Ultra High Strength Steel, Scr. Mater., 2010, 63, p 851–854

    Article  Google Scholar 

  29. 29.

    W.J. Arbegast, Modeling Friction Stir Joining as a Metal Working Process. Hot Deformation Aluminum Alloys III, San Diego, TMS, 2003, p 313–327

    Google Scholar 

  30. 30.

    R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction Stir Welding—Process, Weldment Structure and Properties, Prog. Mater. Sci., 2008, 53, p 980–1023

    Article  Google Scholar 

  31. 31.

    Z. Zhang and H.W. Zhang, Material Behaviors and Mechanical Features in Friction Stir Welding Process, Int. J. Adv. Manuf. Technol., 2007, 35, p 86–100

    Article  Google Scholar 

  32. 32.

    Z.O. Frigaard, O. Grong, and O.T. Midling, A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys, Metall. Mater. Trans. A, 2001, 32A, p 1189–1200

    Article  Google Scholar 

  33. 33.

    R. Nandan, G.G. Roy, T.J. Lienert, and T. Debroy, Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel, Acta Metall., 2007, 5, p 883–895

    Google Scholar 

  34. 34.

    W. Arbegast, A Flow-Partitioned Deformation Zone Model for Defect Formation During Friction Stir Welding, Scr. Mater., 2008, 58, p 372–376

    Article  Google Scholar 

  35. 35.

    G.G. Roy, R. Nandan, and T. DebRoy, Numerical Modelling of 3D Plastic Flow and Heat Transfer During Friction Stir Welding of Stainless Steel, Sci. Technol. Weld. Join., 2006, 11, p 606–608

    Article  Google Scholar 

  36. 36.

    N. Balasubramanian, B. Gattu, and R.S. Mishra, Process Forces During Friction Stir Welding of Aluminum Alloys, Sci. Technol. Weld. Join., 2009, 14, p 142–145

    Article  Google Scholar 

  37. 37.

    A. Arora, M. Mehta, A. De, and T. DebRoy, Load Bearing Capacity of Tool Pin During Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2012, 61, p 911–920

    Article  Google Scholar 

  38. 38.

    L.Y. Wei and T.W. Nelson, Correlation of Microstructures and Process Variables in FSW HSLA-65 Steel, Weld. J., 2011, 90, p 95s–101s

    Google Scholar 

  39. 39.

    S. Kou, Welding Metallurgy, Wiley, New York, 1987, p 36–44

    Google Scholar 

  40. 40.

    P. Zhang, N. Guo, G. Chen, Q. Meng, C. Dong, L. Zhou, and J. Feng, Plastic Deformation Behavior of the Friction Stir Welded AA2024 Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2014, 74, p 673–679

    Article  Google Scholar 

  41. 41.

    K.V. Jata and S.L. Semiatin, Continuous Dynamic Recrystallization During Friction Stir Welding of High Strength Aluminum Alloys, Scr. Mater., 2000, 43, p 743–749

    Article  Google Scholar 

  42. 42.

    A.P. Reynolds, Flow Visualization and Simulation in FSW, Scr. Mater., 2008, 58, p 338–342

    Article  Google Scholar 

  43. 43.

    M.A.F. Oliveira, Jr., A.M. Jorge, and O. Balancin, Influence of Strain Induced Nucleation on the Kinetics of Phase Transformation in a Forging Steel During Warm Working, Scr. Mater., 2004, 50, p 1157–1162

    Article  Google Scholar 

  44. 44.

    L. Hao, M. Sun, N. Xiao, and D. Li, Characterizations of Dynamic Strain-Induced Transformation in Low Carbon Steel, J. Mater. Sci. Technol., 2012, 28, p 1095–1101

    Article  Google Scholar 

  45. 45.

    C. Zheng, D. Rabbe, and D. Li, Numerical Simulation of Dynamic Strain-Induced Austenite-Ferrite Transformation and Post-dynamic Kinetics in a Low Carbon Steel, Mater. Sci. Forum, 2012, 706–709, p 1592–1597

    Article  Google Scholar 

  46. 46.

    Z.H. Zhang, W.Y. Li, J.L. Li, and Y.J. Chao, Effective Predictions of Ultimate Tensile Strength, Peak Temperature and Grain Size of Friction Stir Welded AA2024 Alloy Joints, Int. J. Adv. Manuf. Technol., 2014, 73, p 1213–1218

    Article  Google Scholar 

  47. 47.

    C.J. Sterling, T.W. Nelson, C.D. Sorensen, R.J. Steel, and S.M. Packer, Friction Stir Welding of Quenched and Tempered C-Mn Steel, TMS – AIME, Materials Park, 2003, p 165–171

    Google Scholar 

  48. 48.

    D.H. Choi, C.Y. Li, B.W. Ahn, J.H. Choi, Y.M. Yeon, K. Song, S.G. Hong, W.B. Lee, K.B. Kang, and S.B. Jung, Hybrid Friction Stir Welding of High-Carbon Steel, J. Mater. Sci. Technol., 2011, 27, p 127–130

    Article  Google Scholar 

  49. 49.

    L. Wei and T.W. Nelson, Influence of Heat Input on Post Weld Microstructure and Mechanical Properties of Friction Stir Welded HSLA-65 Steel, Mater. Sci. Eng. A, 2012, 556, p 51–59

    Article  Google Scholar 

  50. 50.

    S.M. Adedayo and S.M. Momoh, Effect of Initial Elevated Metal Temperature on Mechanical Properties of an Arc Welded Mild Steel Plate, Ind. J. Sci. Technol., 2010, 3, p 124–1228

    Google Scholar 

  51. 51.

    G. Cam, S. Erim, C. Yeni, and M. Kocak, Determination of Mechanical and Fracture Properties of Laser Beam Welded Steel Joints, Weld. Res. Suppl., 1999, 78, p 193s–201s

    Google Scholar 

  52. 52.

    L. Mei, G. Chen, X. Jin, Y. Zhang, and Q. Wu, Research on Laser Welding of High Strength Galvanized Automobile Steel Sheets, Opt. Lasers Eng., 2009, 47, p 1117–1124

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director, CSIR-National Metallurgical Laboratory, Jamshedpur for providing infrastructural support to carry out this investigation and kind permission to publish this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Ghosh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Husain, M.M., Sarkar, R., Pal, T.K. et al. Friction Stir Welding of Steel: Heat Input, Microstructure, and Mechanical Property Co-relation. J. of Materi Eng and Perform 24, 3673–3683 (2015). https://doi.org/10.1007/s11665-015-1652-5

Download citation

Keywords

  • carbon steel
  • friction stir welding
  • microhardness
  • microstructure