Skip to main content
Log in

Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on β-Ti Implant by Powder Mixed Electric Discharge Machining

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Herein, a β-Ti-based implant was subjected to powder mixed electric discharge machining (PMEDM) for surface modification to produce a novel biomimetic nanoporous bioceramic surface. The microstructure, surface topography, and phase composition of the non-machined and machined (PMEDMed) surfaces were investigated using field-emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction. The microhardness of the surfaces was measured on a Vickers hardness tester. The corrosion resistance of the surfaces was evaluated via potentiodynamic polarization measurements in simulated body fluid. The application of PMEDM not only altered the surface chemistry, but also imparted the surface with a nanoporous topography or a natural bone-like surface structure. The characterization results confirmed that the alloyed layer mainly comprised bioceramic oxides and carbide phases (TiO2, Nb2O5, ZrO2, SiO2, TiC, NbC, SiC). The microhardness of PMEDMed surface was twofold higher than that of the base material (β-Ti alloy), primarily because of the formation of the hard carbide phases on the machined layer. Electrochemical analysis revealed that PMEDMed surface featured insulative and protective properties and thus displayed higher corrosion resistance ability when compared with the non-machined surface. This result was attributed to the formation of the bioceramic oxides on the machined surface. Additionally, the in vitro biocompatibility of the surfaces was evaluated using human osteoblastic cell line MG-63. PMEDMed surface with a micro-, sub-micro-, and nano-structured topography exhibited bioactivity and improved biocompatibility relative to β-Ti surface. Furthermore, PMEDMed surface enabled better adhesion and growth of MG-63 when compared with the non-machined substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti-Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog. Mater Sci., 2009, 54(3), p 397–425

    Article  Google Scholar 

  2. Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, New Developments of Ti-Based Alloys for Biomedical Applications, Materials, 2014, 7(3), p 1709–1800

    Article  Google Scholar 

  3. S. Minagar, C.C. Berndt, J. Wang, E. Ivanova, and C. Wen, A Review of the Application of Anodization for the Fabrication of Nanotubes on Metal Implant Surfaces, Acta Biomater., 2012, 8(8), p 2875–2888

    Article  Google Scholar 

  4. M. Niinomi, M. Nakai, and J. Hieda, Development of New Metallic Alloys for Biomedical Applications, Acta Biomater., 2012, 8(11), p 3888–3903

    Article  Google Scholar 

  5. A. Vladescu, V. Braic, M. Balaceanu, M. Braic, A.C. Parau, S. Ivanescu, and C. Fanara, Characterization of the Ti–10Nb–10Zr–5Ta Alloy for Biomedical Applications. Part 1: Microstructure, Mechanical Properties, and Corrosion Resistance, J. Mater. Eng. Perform., 2013, 22(8), p 2389–2397

    Google Scholar 

  6. M. Lai, Y. Gao, B. Yuan, and M. Zhu, Effect of Pore Structure Regulation on the Properties of Porous TiNbZr Shape Memory Alloys for Biomedical Application, J. Mater. Eng. Perform., 2015, 24(1), p 136–142

    Article  Google Scholar 

  7. Y. Sasikumar, M. Karthega, and N. Rajendran, In Vitro Bioactivity of Surface-Modified β-Ti Alloy for Biomedical Applications, J. Mater. Eng. Perform., 2011, 20(7), p 1271–1277

    Article  Google Scholar 

  8. X. Liua, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. Rep., 2004, 47, p 49–121

    Article  Google Scholar 

  9. Z. Ur Rahman, L. Pompa, and W. Haider, Influence of Electropolishing and Magnetoelectro Polishing on Corrosion and Biocompatibility of Titanium Implants, J. Mater. Eng. Perform., 2014, 23(11), p 3907–3915

    Article  Google Scholar 

  10. A.L.L. Barboza, K.W. Kang, R.D. Bonetto, C.L. Llorente, P.D. Bilmes, and C.A. Gervasi, Blasting and Passivation Treatments for ASTM F139 Stainless Steel for Biomedical Applications: Effects on Surface Roughness, Hardening, and Localized Corrosion, J. Mater. Eng. Perform., 2015, 24(1), p 175–184

    Article  Google Scholar 

  11. Y. Sasikumar and N. Rajendran, Surface Modification and In Vitro Characterization of Cp-Ti and Ti-5Al-2Nb-1Ta Alloy in Simulated Body Fluid, J. Mater. Eng. Perform., 2012, 21(10), p 2177–2187

    Article  Google Scholar 

  12. X.B. Liu, X.J. Meng, H.Q. Liu, G.L. Shi, S.H. Wu, C.F. Sun, M.D. Wang, and L.H. Qi, Development and Characterization of Laser Clad High Temperature Self-lubricating Wear Resistant Composite Coatings on Ti–6Al–4V Alloy, Mater. Des., 2014, 55, p 404–409

    Article  Google Scholar 

  13. C. Prakash, H.K. Kansal, B.S. Pabla, S. Puri, and A. Aggarwal, Electric Discharge Machining—A Potential Choice for Surface Modification of Metallic Implants for Orthopedics Applications: A Review, Proc. Inst. Mech. Eng. Part B, 2015, doi:10.1177/0954405415579113

    Google Scholar 

  14. S.L. Chen, M.H. Lin, C.C. Chen, and K.L. Ou, Effect of Electro-Discharging on Formation of Biocompatible Layer on Implant Surface, J. Alloys Compd., 2008, 456(1–2), p 413–418

    Article  Google Scholar 

  15. P.W. Peng, K.L. Ou, H.C. Lin, Y.N. Pan, and C.H. Wang, Effect of Electrical-Discharging on Formation of Nanoporous Biocompatible Layer on Titanium, J. Alloys Compd., 2010, 492(1–2), p 625–630

    Article  Google Scholar 

  16. T.S. Yang, M.S. Huang, M.S. Wang, M.H. Lin, M.Y. Tsai, and P.Y.W. Wang, Effect of Electrical Discharging on Formation of Nanoporous Biocompatible Layer on Ti-6Al-4V Alloys, Implant Dent., 2013, 22(4), p 374–379

    Article  Google Scholar 

  17. W.F. Lee, T.S. Yang, Y.C. Wu, and P.W. Peng, Nanoporous Biocompatible Layer on Ti–6Al–4V Alloys Enhanced Osteoblast-Like Cell Response, J. Exp. Clin. Med., 2013, 5(3), p 92–96

    Article  Google Scholar 

  18. T.C. Bin, L.D. Xin, W. Zhan, and G. Yang, Electro-Spark Alloying Using Graphite Electrode on Titanium Alloy Surface for Biomedical Applications, Appl. Surf. Sci., 2011, 257(15), p 6364–6371

    Article  Google Scholar 

  19. P. Harcuba, L. Bacakova, J. Strasky, M. Bacakova, K. Novotna, and M. Janecek, Surface Treatment by Electric Discharge Machining of Ti-6Al-4V Alloy for Potential Application in Orthopaedics, J. Mech. Behav. Biomed. Mater., 2012, 7, p 96–105

    Article  Google Scholar 

  20. J. Strasky, M. Janecek, P. Harcuba, M. Bukovina, and L. Wagner, The Effect of Microstructure on Fatigue Performance of Ti-6Al-4V Alloy after EDM Surface Treatment for Application in Orthopaedics, J. Mech. Behav. Biomed. Mater., 2011, 4(8), p 1955–1962

    Article  Google Scholar 

  21. J. Strasky, J. Havlikova, L. Bacakova, P. Harcuba, M. Mhaede, and M. Janecek, Characterization of Electric Discharge Machining, Subsequent Etching and Shot-Peening as a Surface Treatment for Orthopedic Implants, Appl. Surf. Sci., 2013, 281, p 73–78

    Article  Google Scholar 

  22. J. Havlikova, J. Strasky, M. Vandrovcova, P. Harcuba, M. Mhaede, M. Janecek, and L. Bacakova, Innovative Surface Modification of Ti-6Al-4V Alloy with a Positive Effect on Osteoblast Proliferation and Fatigue Performance, Mater. Sci. Eng. C., 2014, 39, p 371–379

    Article  Google Scholar 

  23. H.K. Kansal, S. Singh, and P. Kumar, Technology and Research Developments in Powder Mixed Electric Discharge Machining (PMEDM), J. Mater. Process. Technol., 2007, 184, p 32–41

    Article  Google Scholar 

  24. N.M. Abbas, D.G. Solomon, and M.F. Bahari, A Review on Current Research Trends in Electrical Discharge Machining (EDM), Int. J. Mach. Tools Manuf., 2007, 47, p 1214–1228

    Article  Google Scholar 

  25. P. Pecas and H. Henriques, Electrical Discharge Machining Using Simple and Powder-Mixed Dielectric: The Effect of the Electrode Area in the Surface Roughness and Topography, J. Mater. Process. Technol., 2008, 200, p 250–258

    Article  Google Scholar 

  26. H.K. Kansal, S. Singh, and P. Kumar, Parametric Optimization of Powder Mixed Electrical Discharge Machining by Response Surface Methodology, J. Mater. Process. Technol., 2005, 169(3), p 427–436

    Article  Google Scholar 

  27. H.K. Kansal, S. Singh, and P. Kumar, Application of Taguchi Method for Optimization of Powder Mixed Electrical Discharge Machining, Int. J. Manuf. Technol. Manag., 2005, 7(2–4), p 329–341

    Google Scholar 

  28. H. Kumar and J.P. Davim, Role of Powder in the Machining of Al-10% SiCp Metal Matrix Composites by Powder Mixed Electric Discharge Machining, J. Compos. Mater., 2010, 45(2), p 133–151

    Article  Google Scholar 

  29. H.K. Kansal, S. Singh, and P. Kumar, Effect of Silicon Powder Mixed EDM on Machining Rate of AISI, D2 Die Steel, J. Manuf. Process., 2007, 9(1), p 13–22

    Article  Google Scholar 

  30. H. Kumar, Development of Mirror Like Surface Characteristics using Nano Powder Mixed Electric Discharge Machining (NPMEDM), Int. J. Adv. Manuf. Technol., 2014, 76(1–4), p 105–113

    Google Scholar 

  31. American Society for Testing and Materials, Annual Book of ASTM Standards, ASTM, Designation: E384-11, Philadelphia, 2011

    Google Scholar 

  32. L.C. Lee, L.C. Lim, V. Narayanan, and V.C. Venkatesh, Quantification of Surface Damage of Tool Steels After EDM, Int. J. Mach. Tools Manuf., 1998, 28(4), p 359–372

    Article  Google Scholar 

  33. B. Lauwers, J.P. Kruth, W. Liu, W. Eeraerts, B. Schacht, and P. Bleys, Investigation of Material Removal Mechanism in EDM of Composite Ceramic Materials, J. Mater. Process. Technol., 2004, 149, p 347–352

    Article  Google Scholar 

  34. K. Muammer, U. Yusuf, and K. Alp, Investigations on Thermo-Mechanical Fabrication of Micro-Scale Porous Surface Features, J. Power Sources, 2008, 79, p 592–602

    Google Scholar 

  35. P.J. Liew, Y. Jiwang, and K. Tsunemoto, Carbon Nanofiber Assisted Micro Electro Discharge Machining of Reaction-Bonded Silicon Carbide, J. Mater. Process. Technol., 2013, 213, p 1076–1087

    Article  Google Scholar 

  36. B. Ekmekci and Y. Ersoz, How Suspended Particles Affect Surface Morphology in Powder Mixed Electrical Discharge Machining (PMEDM), Metall. Mater. Trans. B, 2012, 43(5), p 1138–1148

    Article  Google Scholar 

  37. S. Zinelis, S. Youssef, Y.S. Al Jabbari, N. Silikas, and G. Eliades, Multitechnique Characterization of CPTi Surfaces After Electro Discharge Machining (EDM), Clin. Oral. Invest., 2014, 18, p 67–75

    Article  Google Scholar 

  38. F.L. Amorim, L.J. Stedile, and R.D. Torres, Performance and Surface Integrity of Ti6Al4V After Sinking EDM with Special Graphite Electrodes, J. Mater. Eng. Perform., 2013, 23, p 1480–1488

    Article  Google Scholar 

  39. P. Janmanee and A. Muttamara, Surface Modification of Tungsten Carbide by Electrical Discharge Coating (EDC) Using a Titanium Powder Suspension, Appl. Surf. Sci., 2012, 258(19), p 7255–7265

    Article  Google Scholar 

  40. H.J. Chen, K.L. Wu, and B.H. Yan, Characteristics of Al Alloy Surface After EDC with Sintered Ti Electrode and TiN Powder Additive, Int. J. Adv. Manuf. Technol., 2014, 72, p 319–332

    Article  Google Scholar 

  41. Z.M. Zain, M.B. Ndaliman, A.A. Khan, and M.Y. Ali, Improving Micro-Hardness of Stainless Steel Through Powder-Mixed Electrical Discharge Machining, Proc. Inst. Mech. Eng. Part B, 2014, doi:10.1177/0954406214530872

    Google Scholar 

  42. M.B. Ndaliman, A.A. Khan, and M.Y. Ali, Influence of Electrical Discharge Machining Process Parameters on Surface Micro-Hardness of Titanium Alloy, Proc. Inst. Mech. Eng. Part B, 2013, 227, p 460–464

    Article  Google Scholar 

  43. Z.L. Wang, Y. Fang, P.N. Wu, W.S. Zhao, and K. Cheng, Surface Modification Process by Electrical Discharge Machining with a Ti Powder Green Compact Electrode, J. Mater. Process. Technol., 2002, 129, p 139–142

    Article  Google Scholar 

  44. M. Arun, V. Duraiselvam, and R. Senthilkumar, Synthesis of Electric Discharge Alloyed Nickel-Tungsten Coating on Tool Steel and its Tribological Studies, Mater. Des., 2014, 63, p 257–262

    Article  Google Scholar 

  45. V. Braic, M. Braic, M. Balaceanu, A. Vladescu, C.N. Zoita, I. Titorencu, and V. Jinga (Zr, Ti)CN Coatings as Potential Candidates for Biomedical Applications, Surf. Coat. Technol., 2011, 206, p 604–609

    Article  Google Scholar 

  46. S.A. Pauline and N. Rajendran, Biomimetic Novel Nanoporous Niobium Oxide Coating for Orthopaedic Applications, Appl. Surf. Sci., 2014, 290, p 448–457

    Article  Google Scholar 

  47. S. Nagarajan and N. Rajendran, Sol–Gel Derived Porous Zirconium Dioxide Coated on 316L SS for Orthopedic Applications, J. Sol-Gel Sci. Technol., 2009, 52, p 188–196

    Article  Google Scholar 

  48. S.L. Chen, M.H. Lin, G.X. Huang, and C.C. Wang, Research of the Recast Layer on Implant Surface Modified by Micro-Current Electrical Discharge Machining Using Deionized Water Mixed with Titanium Powder as Dielectric Solvent, Appl. Surf. Sci., 2014, 311, p 47–53

    Article  Google Scholar 

Download references

Acknowledgment

We acknowledge financial support from the Department of Science and Technology (DST), Government of India under the Science and Engineering Research Board (SERB) (Project No. SR/S3/MERC/0028/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Kansal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, C., Kansal, H.K., Pabla, B.S. et al. Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on β-Ti Implant by Powder Mixed Electric Discharge Machining. J. of Materi Eng and Perform 24, 3622–3633 (2015). https://doi.org/10.1007/s11665-015-1619-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1619-6

Keywords

Navigation