Journal of Materials Engineering and Performance

, Volume 24, Issue 9, pp 3356–3364 | Cite as

Microstructure, Cyclic Deformation and Corrosion Behavior of Laser Welded NiTi Shape Memory Wires

  • G. R. Mirshekari
  • A. Kermanpur
  • A. Saatchi
  • S. K. Sadrnezhaad
  • A. P. Soleymani
Article

Abstract

The present paper reports the effects of Nd:YAG laser welding on the microstructure, phase transformation, cyclic deformation behavior, and corrosion resistance of Ti-55 wt.% Ni wire. The results showed that the laser welding altered the microstructure of the weld metal which mainly composed of columnar dendrites grown epitaxially from the fusion line. DSC results indicated that the onset of the transformation temperatures of the weld metal differed from that of the base metal. Cyclic stress-strain behavior of laser-welded NiTi wire was comparable to the as-received material; while a little reduction in the pseudo-elastic property was noted. The weld metal exhibited higher corrosion potential, lower corrosion current density, higher breakdown potential and wider passive region than the base metal. The weld metal was therefore more resistant to corrosion than the base metal.

Keywords

joint properties laser welding NiTi shape memory alloy 

References

  1. 1.
    T. Duerig, A. Pelton, and D. Stockel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 273–275, p 149–160CrossRefGoogle Scholar
  2. 2.
    N.B. Morgan, Medical Shape Memory Alloy Applications-The Market and Its Products, Mater. Sci. Eng. A, 2004, 378, p 16–23CrossRefGoogle Scholar
  3. 3.
    F. Nematzadeh and S.K. Sadrnezhaad, Effects of the Ageing Treatment on the Superelastic Behavior of a Nitinol Stent for An Application in the Esophageal Duct: A Finite-Element Analysis, Mater. Technol., 2013, 47(4), p 45–51Google Scholar
  4. 4.
    S.K. Sadrnezhaad, N.H. Nemati, and R. Bagheri, Improved Adhesion of NiTi Wire to Silicone Matrix for Smart Composite Medical Applications, Mater. Des., 2009, 30(9), p 3667–3672CrossRefGoogle Scholar
  5. 5.
    S.K. Sadrnezhaad and S.B. Raz, Effect of Microstructure on Rolling Behavior of NiTi Memory Alloy, Mater. Manuf. Process., 2008, 23(7), p 646–650CrossRefGoogle Scholar
  6. 6.
    X. Zhao, W. Wang, L. Chen, F. Liu, J. Huang, and H. Zhang, Microstructures of Cerium Added Laser Weld of a TiNi Alloy, Mater. Lett., 2008, 62, p 1551–1553CrossRefGoogle Scholar
  7. 7.
    S.K. Sadrnezhaad, N. Yasavol, M. Ganjali, and S. Sanjabi, Property Change During Nanosecond Pulse Laser Annealing of Amorphous NiTi Thin Film, Bull. Mater. Sci., 2012, 35(3), p 357–364CrossRefGoogle Scholar
  8. 8.
    T. Shinoda, T. Tsuchiya, and H. Takahashi, Functional Characteristics of Friction Welded Near-Equiatomic TiNi Shape Memory Alloy, Trans. Jpn. Weld. Soc., 1991, 22, p 30–36Google Scholar
  9. 9.
    S. Fukumoto, T. Inoue, S. Mizuno, K. Okita, T. Tomita, and A. Yamamoto, Friction Welding of TiNi Alloy to Stainless Steel Using Ni Interlayer, Sci. Technol. Weld. Join., 2010, 15, p 124–130CrossRefGoogle Scholar
  10. 10.
    A. Ikai, K. Kimura, and H. Tobush, TIG Welding and Shape Memory Effect of TiNi Shape Memory Alloy, J. Intell. Mater. Syst. Struct., 1996, 7, p 646–654CrossRefGoogle Scholar
  11. 11.
    C. Van der Eijk, H. Fostervoll, Z.K. Sallom, and O.M. Akselsen, Plasma Welding of NiTi to NiTi, Stainless Steel and Hastelloy C276, Proceedings of the ASM Materials Solutions Conference, Pittsburgh, Pennsylvania, October 13–15, 2003, p 125–129Google Scholar
  12. 12.
    M. Seki, H. Yamamoto, M. Nojiri, K. Uenishi, and K.F. Kobayashi, Brazing of Ti-Ni Shape Memory Alloy with Stainless Steel, J. Jpn. Inst. Met., 2000, 64, p 632–640Google Scholar
  13. 13.
    X.M. Qiu, M.G. Li, D.Q. Sun, and W.H. Liu, Study on Brazing of TiNi Shape Memory Alloy with Stainless Steels, J. Mater. Process. Technol., 2006, 176, p 8–12CrossRefGoogle Scholar
  14. 14.
    H. Gugel, A. Schuermann, and W. Teisen, Laser Welding of NiTi Wires, Mater. Sci. Eng. A, 2008, 481–482, p 668–671CrossRefGoogle Scholar
  15. 15.
    A. Tuissi, S. Besseghini, T. Ranucci, F. Squatrito, and M. Pozzi, Effect of Nd-YAG Laser Welding on the Functional Properties of the Ni-49.6 at.% Ti, Mater. Sci. Eng. A, 1999, 273–275, p 813–817CrossRefGoogle Scholar
  16. 16.
    Y.H. Hsu, S.K. Wang, and C. Chen, Effect of CO2 Laser Welding on the Shape-Memory and Corrosion Characteristics of TiNi Alloy, Metall. Mater. Trans. A, 2001, 32, p 569–576CrossRefGoogle Scholar
  17. 17.
    X.J. Yan, D.Z. Yang, and X.P. Liu, Corrosion Behavior of a Laser-Welded NiTi Shape Memory Alloy, Mater. Charact., 2007, 58, p 623–628CrossRefGoogle Scholar
  18. 18.
    L. AlbertyVieira, F.M. BrazFernandes, R.M. Miranda, R.J.C. Silva, L. Quintino, A. Cuesta, and J.L. Ocana, Mechanical Behaviour of Nd:YAG Laser Welded Superelastic NiTi, Mater. Sci. Eng. A, 2011, 528, p 5560–5565CrossRefGoogle Scholar
  19. 19.
    A. Falvo, F.M. Furgiuele, and C. Maletta, Laser Welding of a NiTi Alloy: Mechanical and Shape Memory Behaviour, Mater. Sci. Eng. A, 2005, 412, p 235–240CrossRefGoogle Scholar
  20. 20.
    R. Venugopalan and C. Trépanier, Assessing the Corrosion Behaviour of Nitinol for Minimally Invasive Device Design, Minim. Invasive Ther. Allied Technol., 2000, 9, p 67–74CrossRefGoogle Scholar
  21. 21.
    C.W. Chan, H.C. Man, and T.M. Yue, Effect of Post-Weld Heat-Treatment on the Oxide Film and Corrosion Behaviour of Laser-Welded Shape Memory NiTi Wires, Corros. Sci., 2012, 56, p 158–167CrossRefGoogle Scholar
  22. 22.
    X.-J. Yan, D.-Z. Yang, and X.-P. Liu, Electrochemical Behavior of YAG Laser-Welded NiTi Shape Memory Alloy, Trans. Nonferrous Met. Soc. China, 2006, 16, p 572–576CrossRefGoogle Scholar
  23. 23.
    C.W. Chan, H.C. Man, and T.M. Yue, Effect of Postweld Heat Treatment on the Microstructure and Cyclic Deformation Behavior of Laser-Welded NiTi-Shape Memory Wires, Metall. Mater. Trans. A, 2012, 43A, p 1956–1965CrossRefGoogle Scholar
  24. 24.
    M.D.M. das Neves, A. Lotto, J.R. Berretta, W. de Rossi, and N.D.V. Junior, Microstructure Development in Nd:YAG Laser Welding of AISI, 304 and Inconel 600, Weld. Int., 2010, 24, p 739–748CrossRefGoogle Scholar
  25. 25.
    C.W. Chan, H.C. Man, and T.M. Yue, Susceptibility to Environmentally Induced Cracking of Laser-Welded NiTi Wires in Hanks’ Solution at Open-Circuit Potential, Mater. Sci. Eng. A, 2012, 544, p 38–47CrossRefGoogle Scholar
  26. 26.
    C.A. Biffi, P. Bassani, M. Carnevale, N. Lecis, A. Loconte, B. Previtali, and A. Tuissi, Effect of Laser Microcutting on Thermo-mechanical Properties on NiTiCu Shape Memory Alloy, Met. Mater. Int., 2014, 20, p 83–92CrossRefGoogle Scholar
  27. 27.
    G.R. Mirshekari, A. Saatchi, A. Kermanpur, and S.K. Sadrnezhaad, Laser Welding of NiTi Shape Memory Alloy: Comparison of the Similar and Dissimilar Joints to AISI, 304 Stainless Steel, Opt. Laser Technol., 2013, 54, p 151–158CrossRefGoogle Scholar
  28. 28.
    C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, and A. Tuissi, Fatigue of Pseudoelastic NiTi Within the Stress-Induced Transformation Regime: A Modified Coffin-Manson Approach, Smart Mater. Struct., 2012, 21, p 112001CrossRefGoogle Scholar
  29. 29.
    H. Tobushi, T. Nakahara, Y. Shimeno, and T. Hashimoto, Low-Cycle Fatigue of TiNi Shape Memory Alloy and Formulation of Fatigue Life, Trans. ASME, 2000, 122, p 186–191CrossRefGoogle Scholar
  30. 30.
    G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner, Structural and Functional Fatigue of NiTi Shape Memory Alloys, Mater. Sci. Eng. A, 2004, 378, p 24–33CrossRefGoogle Scholar
  31. 31.
    C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, and A. Tuissi, Fatigue Properties of a Pseudoelastic NiTi Alloy: Strain Ratcheting and Hysteresis Under Cyclic Tensile Loading, Int. J. Fatigue, 2014, 66, p 78–85CrossRefGoogle Scholar
  32. 32.
    S.A. Shabalovskaya, Surface, Corrosion, and Biocompatibility Aspects of Nitinol as an Implant Material, Bio-Med. Mater. Eng., 2002, 12, p 69–109Google Scholar
  33. 33.
    H.H. Huang, Corrosion Resistance of Stressed NiTi and Stainless Steel Orthodontic Wires in Acid Artificial Saliva, J. Biomed. Mater. Res., 2003, 66(4), p 829–839CrossRefGoogle Scholar
  34. 34.
    C.W. Chan and H.C. Man, Laser Welding of Thin Foil Nickel-Titanium Shape Memory Alloy, Opt. Lasers Eng., 2011, 49, p 121–126CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • G. R. Mirshekari
    • 1
  • A. Kermanpur
    • 1
  • A. Saatchi
    • 1
    • 2
  • S. K. Sadrnezhaad
    • 3
  • A. P. Soleymani
    • 1
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyEsfahānIran
  2. 2.Department of Materials Science and EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran

Personalised recommendations