Skip to main content
Log in

Microbially Influenced Corrosion of 304 Stainless Steel and Titanium by P. variotii and A. niger in Humid Atmosphere

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microbially induced corrosion (MIC) poses significant threats to reliability and safety of engineering materials and structures. While most MIC studies focus on prokaryotic bacteria such as sulfate-reducing bacteria, the influence of fungi on corrosion behaviors of metals has not been adequately reported. In this study, 304 stainless steel and titanium were exposed to two very common fungi, Paecilomyces variotii, Aspergillus niger and their mixtures under highly humid atmosphere. The initial corrosion behaviors within 28 days were studied via scanning Kelvin probe, which showed marked surface ennoblement and increasingly heterogeneous potential distribution upon prolonged fungus exposure. Using stereomicroscopy, fungus growth as well as corrosion morphology of 304 stainless steel and titanium were also evaluated after a long-term exposure for 60 days. The presence of fungi decreased the corrosion resistance for both 304 stainless steel and titanium. Titanium showed higher resistance to fungus growth and the induced corrosion. Exposure to the mixed strains resulted in the highest fungus growth rate but the mildest corrosion, possibly due to the decreased oxygen level by increased fungal activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H.A. Videla and L.K. Herrera, Microbiologically Influenced Corrosion: Looking to the Future, Int. Microbiol., 2005, 8, p 169

    Google Scholar 

  2. D. Walsh, D. Pope, M. Danford, and T. Huff, The Effect of Microstructure on Microbiologically Influenced Corrosion, JOM, 1993, 45, p 22–30

    Article  Google Scholar 

  3. B.J. Little and J.S. Lee, Microbiologically Influenced Corrosion: An Update, Int. Mater. Rev., 2014, 59, p 384–393

    Article  Google Scholar 

  4. J. Xu, K. Wang, C. Sun, F. Wang, X. Li, J. Yang, and C. Yu, The Effects of Sulfate Reducing Bacteria on Corrosion of Carbon Steel Q235 Under Simulated Disbonded Coating by Using Electrochemical Impedance Spectroscopy, Corros. Sci., 2011, 53, p 1554–1562

    Article  Google Scholar 

  5. Z.H. Dong, W. Shi, H.M. Ruan, and G.A. Zhang, Heterogeneous Corrosion of Mild Steel Under SRB-Biofilm Characterised by Electrochemical Mapping Technique, Corros. Sci., 2011, 53, p 2978–2987

    Article  Google Scholar 

  6. X. Wang, J. Xu, and C. Sun, Effects of Sulfate-Reducing Bacterial on Corrosion of 403 Stainless Steel in Soils Containing Chloride Ions, Int. J. Electrochem. Sci., 2013, 8, p 821–830

    Google Scholar 

  7. J. Duan, S. Wu, X. Zhang, G. Huang, M. Du, and B. Hou, Corrosion of Carbon Steel Influenced by Anaerobic Biofilm in Natural Seawater, Electrochim. Acta, 2008, 54, p 22–28

    Article  Google Scholar 

  8. M. Stipaničev, F. Turcu, L. Esnault, E.W. Schweitzer, R. Kilian, and R. Basseguy, Corrosion Behavior of Carbon Steel in Presence of Sulfate-Reducing Bacteria in Seawater Environment, Electrochim. Acta, 2013, 113, p 390–406

    Article  Google Scholar 

  9. M.A. Shirakawa, I. Beech, R. Tapper, M. Cincotto, and W. Gambale, The Development of a Method to Evaluate Bioreceptivity of Indoor Mortar Plastering to Fungal Growth, Int. Biodeterior. Biodegr., 2003, 51, p 83–92

    Article  Google Scholar 

  10. I.-U. Haq, S. Ali, and M. Qadeer, Influence of Dissolved Oxygen Concentration on Intracellular pH for Regulation of Aspergillus niger Growth Rate During Citric Acid Fermentation in a Stirred Tank Bioreactor, Int. J. Biol. Sci., 2005, 1, p 34

    Google Scholar 

  11. Y. Li, L. Wadsö, L. Larsson, and J. Bjurman, Correlating Two Methods of Quantifying Fungal Activity: Heat Production by Isothermal Calorimetry and Ergosterol Amount by Gas Chromatography-Tandem Mass Spectrometry, Thermochim. Acta, 2007, 458, p 77–83

    Article  Google Scholar 

  12. C.J. McNamara, T.D. Perry IV, R. Leard, K. Bearce, J. Dante, and R. Mitchell, Corrosion of Aluminum Alloy 2024 by Microorganisms Isolated from Aircraft Fuel Tanks, Biofouling, 2005, 21, p 257–265

    Article  Google Scholar 

  13. M. Stoica, M. Brumă, and G. Cârâc, Electrochemical Study of AISI, 304 Stainless Steel During the Exposure at the Disinfectant Solutions with Fungal Suspensions, Mater. Corros., 2010, 61, p 1017–1025

    Article  Google Scholar 

  14. E. Juzeliūnas, R. Ramanauskas, A. Lugauskas, K. Leinartas, M. Samulevičienė, A. Sudavičius, and R. Juškėnas, Microbially Influenced Corrosion of Zinc and Aluminium—Two-Year Subjection to Influence of Aspergillus niger, Corros. Sci., 2007, 49, p 4098–4112

    Article  Google Scholar 

  15. S. Yuan and S. Pehkonen, Microbiologically Influenced Corrosion of 304 Stainless Steel by Aerobic Pseudomonas NCIMB 2021 Bacteria: AFM and XPS study, Colloid Surf. B, 2007, 59, p 87–99

    Article  Google Scholar 

  16. T. Wu, J. Xu, M. Yan, C. Sun, C. Yu, and W. Ke, Synergistic Effect of Sulfate-Reducing Bacteria and Elastic Stress on Corrosion of X80 Steel in Soil Solution, Corros. Sci., 2014, 83, p 38–47

    Article  Google Scholar 

  17. E. Lunarska, J. Birn, and P. Domżalicki, Hydrogen Uptake by Structural Steels at Cathodic Protection in Sea Water Inoculated with Sulfate Reducing Bacteria, Mater. Corros., 2007, 58, p 13–19

    Article  Google Scholar 

  18. H.A. Videla and L.K. Herrera, Understanding Microbial Inhibition of Corrosion. A Comprehensive Overview, Int. Biodeterior. Biodegr., 2009, 63, p 896–900

    Article  Google Scholar 

  19. C. Xu, Y. Zhang, G. Cheng, and W. Zhu, Localized Corrosion Behavior of 316L Stainless Steel in the Presence of Sulfate-Reducing and Iron-Oxidizing Bacteria, Mater. Sci. Eng. A, 2007, 443, p 235–241

    Article  Google Scholar 

  20. B. Little and R. Ray, A Review of Fungal Influenced Corrosion, Corros. Rev., 2001, 19, p 401–418

    Google Scholar 

  21. S. Day, M. Whalen, K. King, G. Hust, L. Wong, J. Estill, and R. Rebak, Corrosion Behavior of Alloy 22 in Oxalic Acid and Sodium Chloride Solutions, Corrosion, 2004, 60, p 804–814

    Article  Google Scholar 

  22. N. Muthukumar, A. Rajasekar, S. Ponmariappan, S. Mohanan, S. Maruthamuthu, S. Muralidharan, P. Subramanian, N. Palaniswamy, and M. Raghavan, Microbiologically Influenced Corrosion in Petroleum Product Pipelines—A Review, Indian J. Exp. Biol., 2003, 41, p 1012–1022

    Google Scholar 

  23. C. Galhaup and D. Haltrich, Enhanced Formation of Laccase Activity by the White-Rot Fungus Trametes pubescens in the Presence of Copper, Appl. Microbiol. Biotechnol., 2001, 56, p 225–232

    Article  Google Scholar 

  24. Z.-S. Wang, Y.-X. Gu, and Q.-S. Yuan, Effect of Nutrition Factors on the Synthesis of Superoxide Dismutase, Catalase, and Membrane Lipid Peroxide Levels in Cordyceps militaris Mycelium, Curr. Microbiol., 2006, 52, p 74–79

    Article  Google Scholar 

  25. D.J. Kosman, Iron Metabolism in Aerobes: Managing Ferric Iron Hydrolysis and Ferrous Iron Autoxidation, Coordin. Chem. Rev., 2013, 257, p 210–217

    Article  Google Scholar 

  26. B. Little, P. Wagner, and F. Mansfeld, Microbiologically Influenced Corrosion of Metals and Alloys, Int. Mater. Rev., 1991, 36, p 253–272

    Article  Google Scholar 

  27. N. Muthukumar, S. Mohanan, S. Maruthamuthu, P. Subramanian, N. Palaniswamy, and M. Raghavan, Role of Brucella sp. and Gallionella sp. in Oil Degradation and Corrosion, Electrochem. Commun., 2003, 5, p 421–425

    Article  Google Scholar 

  28. J. Liao, H. Fukui, T. Urakami, and H. Morisaki, Effect of Biofilm on Ennoblement and Localized Corrosion of Stainless Steel in Fresh Dam-Water, Corros. Sci., 2010, 52, p 1393–1403

    Article  Google Scholar 

  29. W. Wang, P.E. Jenkins, and Z. Ren, Electrochemical Corrosion of Carbon Steel Exposed to Biodiesel/Simulated Seawater Mixture, Corros. Sci., 2012, 57, p 215–219

    Article  Google Scholar 

  30. S. Chen, P. Wang, and D. Zhang, Corrosion Behavior of Copper Under Biofilm of Sulfate-Reducing Bacteria, Corros. Sci., 2014, 87, p 407–415

    Article  Google Scholar 

  31. H. Lin and G. Frankel, Atmospheric Corrosion of Cu During Constant Deposition of NaCl, J. Electrochem. Soc., 2013, 160, p C336–C344

    Article  Google Scholar 

  32. M. Stratmann and H. Streckel, The Investigation of the Corrosion of Metal Surfaces, Covered with Thin Electrolyte Layers—A New Experimental Technique, Berich. Bunsen Gesell., 1988, 92, p 1244–1250

    Article  Google Scholar 

  33. M. Rohwerder, G.S. Frankel, M. Stratmann, P. Leblanc, Application of Scanning Kelvin Probe in Corrosion Science, Analytical Methods in Corrosion Science and Engineering, CRC Press, Boca Raton, 2005, p 605–648

  34. W. Wang, X. Zhang, and J. Wang, Heterogeneous Electrochemical Characteristics of Biofilm/Metal Interface and Local Electrochemical Techniques Used for This Purpose, Mater. Corros., 2009, 60, p 957–962

    Article  Google Scholar 

  35. M. Sun, K. Xiao, C. Dong, X. Li, and P. Zhong, Electrochemical and Initial Corrosion Behavior of Ultrahigh Strength Steel by Scanning Kelvin Probe, J. Mater. Eng. Perform., 2013, 22, p 815–822

    Article  Google Scholar 

  36. J. Qiu, Passivity and Its Breakdown on Stainless Steels and Alloys, Surf. Interface Anal., 2002, 33, p 830–833

    Article  Google Scholar 

  37. B.J. Little, J.S. Lee, and R.I. Ray, The Influence of Marine Biofilms on Corrosion: A Concise Review, Electrochim. Acta, 2008, 54, p 2–7

    Article  Google Scholar 

  38. A. Bressel, J.W. Schultze, W. Khan, G.M. Wolfaardt, H.P. Rohns, R. Irmscher, and M.J. Schöning, High Resolution Gravimetric, Optical and Electrochemical Investigations of Microbial Biofilm Formation in Aqueous Systems, Electrochim. Acta, 2003, 48, p 3363–3372

    Article  Google Scholar 

  39. C. Marconnet, C. Dagbert, M. Roy, and D. Féron, Stainless Steel Ennoblement in Freshwater: From Exposure Tests to Mechanisms, Corros. Sci., 2008, 50, p 2342–2352

    Article  Google Scholar 

  40. C. Dong, H. Luo, K. Xiao, Y. Ding, P. Li, and X. Li, Electrochemical Behavior of 304 Stainless Steel in Marine Atmosphere and Its Simulated Solution, Anal. Lett., 2013, 46, p 142–155

    Article  Google Scholar 

  41. F.N. Afshar, J. de Wit, H. Terryn, and J. Mol, Scanning Kelvin Probe Force Microscopy as a Means of Predicting the Electrochemical Characteristics of the Surface of a Modified AA4xxx/AA3xxx (Al Alloys) Brazing Sheet, Electrochim. Acta, 2013, 88, p 330–339

    Article  Google Scholar 

  42. I.B. Beech and J. Sunner, Biocorrosion: Towards Understanding Interactions Between Biofilms and Metals, Curr. Opin. Biotechnol., 2004, 15, p 181–186

    Article  Google Scholar 

  43. Y. Duan, S.-M. Li, J. Du, and J.-H. Liu, Corrosion Behavior of Q235 Steel in the Presence of Pseudomonas and Iron Bacteria, Acta Phys. Chim. Sin., 2010, 26, p 3203–3211

    Google Scholar 

  44. N.O. San, H. Nazır, and G. Dönmez, Evaluation of Microbiologically Influenced Corrosion Inhibition on Ni-Co Alloy Coatings by Aeromonas salmonicida and Clavibacter michiganensis, Corros. Sci., 2012, 65, p 113–118

    Article  Google Scholar 

  45. A. Jayaraman, E.T. Cheng, J.C. Earthman, and T.K. Wood, Importance of Biofilm Formation for Corrosion Inhibition of SAE 1018 Steel by Axenic Aerobic Biofilms, J. Ind. Microbiol. Biotechnol., 1997, 18, p 396–401

    Article  Google Scholar 

  46. A. Jayaraman, J.C. Earthman, and T.K. Wood, Corrosion Inhibition by Aerobic Biofilms on SAE 1018 Steel, Appl. Microbiol. Biotechnol., 1997, 47, p 62–68

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 51401018), the National Basic Research Program of China (973 Program Project, No. 2014CB643300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Xiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

a) 304 stainless steel and b) titanium surfaces after 28 days of exposure to nutrient solution (TIFF 776 kb)

Figure S2

EDS analyses on a) bare surface and b) corrosion product of 304 stainless steel exposed to P. variotii (TIFF 895 kb)

Figure S3

EDS analyses on a) bare surface and b) corrosion product of 304 stainless steel exposed to A. niger (TIFF 860 kb)

Figure S4

Potential distribution on bare surfaces of a) 304 stainless steel and b) titanium; c) Gaussian fitting curve of potential distribution on bare stainless steel (TIFF 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhou, F., Xiao, K. et al. Microbially Influenced Corrosion of 304 Stainless Steel and Titanium by P. variotii and A. niger in Humid Atmosphere. J. of Materi Eng and Perform 24, 2688–2698 (2015). https://doi.org/10.1007/s11665-015-1558-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1558-2

Keywords

Navigation