Skip to main content

Advertisement

Log in

Long-Term Atmospheric Corrosion of Aluminum Alloy 2024-T4 in a Coastal Environment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Aluminum alloy 2024-T4 specimens were exposed to atmosphere for 7, 12, and 20 years, respectively, to study long-term corrosion in a coastal environment. One-directional corrosion region and cross-directional corrosion region were defined according to corrosion characters. The statistical regularities, surface appearance, corrosion products, and cross-sectional morphology of both regions were investigated. It was found that the minimum remaining thicknesses of each region can be described by a normal distribution and linearly decrease as the exposure time is increased from 7 to 20 years. The corrosion pits, chlorine ions, and interlinked inner pits are promoting exfoliation, and the alloy’s corrosion susceptibility along the long transverse direction is strongly location dependent due to the restrictions imposed by the side material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.Q. Sun, Q.F. Zheng, D.F. Li, and J.G. Wen, Long-Term Atmospheric Corrosion Behavior of Aluminium Alloy 2024 and 7075 in Urban, Coastal and Industrial Environments, Corros. Sci., 2009, 51, p 719–727

    Article  Google Scholar 

  2. K.R. Van Horn, Aluminum, Properties, Physical Metallurgy and Phase Diagrams, Vol I, American Society for Metals, Metals Park, 1967

    Google Scholar 

  3. E.A. Baker, Long-Term Corrosion Behavior of Materials in the Marine Atmosphere, Degradation of Metals in the Atmosphere, S.W. Dean and T.S. Lee, Ed., American Society for Testing and Materials, Philadelphia, 1988, p 125–144

    Google Scholar 

  4. Z.Y. Wang, T. Ma, W. Han, and G.C. Yu, Corrosion Behavior on Aluminum Alloy LY12 in Simulated Atmospheric Corrosion Process, Trans. Nonferrous Metal. Soc., 2007, 17, p 326–334

    Article  Google Scholar 

  5. B.B. Wang, Z.Y. Wang, W. Han, C. Wang, and W. Ke, Effects of Magnesium Chloride-Based Multicomponent Salts on Atmospheric Corrosion of Aluminum Alloy 2024, Trans. Nonferrous Metal. Soc., 2013, 23, p 1199–1208

    Article  Google Scholar 

  6. Z. Dan, I. Muto, and N. Hara, Effects of Environmental Factors on Atmospheric Corrosion of Aluminium and its Alloy Under Constant Dew Point Conditions, Corros. Sci., 2012, 57, p 22–29

    Article  Google Scholar 

  7. Y.Y. Shi, Z. Zhang, J.X. Su, F.H. Cao, and J.Q. Zhang, Electrochemical Noise Study on 2024-T3 Aluminum Alloy Corrosion in Simulated Acid Rain Under Cyclic Wet-Dry Condition, Electrochim. Acta, 2006, 51, p 4977–4986

    Article  Google Scholar 

  8. M. Liu, J.P. Cai, X.Y. Zhang, F. Lu, Study on Simulative and Accelerated Tests of 2A12 Aluminum Alloy Marine Corrosion, J. Mater. Eng., 2010, z1, p 348–351, 376

  9. J.P. Cai, M. Liu, Z.H. Luo, Z.H. Tang, B. Li, X.Y. Zhang, F. Lu, and C.H. Tao, Study on Accelerated Tests for Aluminum Alloy Atmospheric Corrosion, J. Chin. Soc. Corros. Prot., 2005, 25, p 262–266

    Google Scholar 

  10. Y.L. Cheng, Z. Zhang, F.H. Cao, J.F. Li, J.Q. Zhang, J.M. Wang, and C.N. Cao, A Study of the Corrosion of Aluminum Alloy 2024-T3 Under Thin Electrolyte Layers, Corros. Sci., 2004, 46, p 1649–1667

    Article  Google Scholar 

  11. V. Moutarlier, M.P. Gigandet, B. Normand, and J. Pagetti, EIS Characterisation of Anodic Films Formed on 2024 Aluminium Alloy, in Sulphuric Acid Containing Molybdate or Permanganate Species, Corros. Sci., 2005, 47, p 937–951

    Article  Google Scholar 

  12. A. Astarita, C. Bitondo, A. Squillace, E. Armentani, and F. Bellucci, Stress Corrosion Cracking Behaviour of Conventional and Innovative Aluminium Alloys for Aeronautic Applications, Surf. Interface Anal., 2013, 45, p 1610–1618

    Article  Google Scholar 

  13. S.J. Ketcham and E.J. Jankowsky, Developing an Accelerated Test: Problems and Pitfalls, Laboratory Corrosion Tests and Standards, STP 866, G.S. Haynes and R. Babioan, Ed., American Society for Testing and Materials, West Conshohocken, 1985, p 14

    Chapter  Google Scholar 

  14. F. Corvo, T. Perez, L.R. Dzib, Y. Martin, A. Castaneda, E. Gonzalez, and J. Perez, Outdoor-Indoor Corrosion of Metals in Tropical Coastal Atmospheres, Corros. Sci., 2008, 50, p 220–230

    Article  Google Scholar 

  15. F. Corvo, A.D. Torrens, N. Betancourt, J. Perez, and E. Gonzalez, Indoor Atmospheric Corrosion in Cuba. A Report About Indoor Localized Corrosion, Corros. Sci., 2007, 49, p 418–435

    Article  Google Scholar 

  16. A.R. Mendoza and F. Corvo, Outdoor and Indoor Atmospheric Corrosion of Non-ferrous Metals, Corros. Sci., 2000, 42, p 1123–1147

    Article  Google Scholar 

  17. Y.J. Liu, Z.Y. Wang, and W. Ke, Study on Influence of Native Oxide and Corrosion Products on Atmospheric Corrosion of Pure Al, Corros. Sci., 2014, 80, p 169–176

    Article  Google Scholar 

  18. J.A. Gonzalez, M. Morcillo, E. Escudero, V. Lopez, and E. Otero, Atmospheric Corrosion of Bre and Anodized Aluminum in a Wide Range of Environment Conditions. Part I: Visual Observations and Gravimetric Results, Surf. Coat. Technol., 2002, 153, p 225–234

    Article  Google Scholar 

  19. A.S. Elola, T.F. Otero, and A. Porro, Evolution of the Pitting of Aluminum Exposed to the Atmosphere, Corrosion, 1992, 48, p 854–863

    Article  Google Scholar 

  20. S.Q. Sun, Q.F. Zheng, D.F. Li, S.Q. Hu, and J.G. Wen, Exfoliation Corrosion of Extruded 2024-T4 in the Coastal Environments in China, Corros. Sci., 2011, 53, p 2527–2538

    Article  Google Scholar 

  21. Q.F. Zheng, S.Q. Sun, J.G. Wen, and D.F. Li, Atmospheric Corrosion Behaviours of Aluminum and Aluminum Alloys in Desert Atmosphere of Southern Xinjiang Province, China, Chin. J. Nonferrous Met., 2009, 19, p 353–359

    Article  Google Scholar 

  22. S.Q. Sun, Q.F. Zheng, D.F. Li, J. Chen, and J.G. Wen, Long-term atmospheric corrosion behavior of LY12 aluminum alloy, J. Chin. Soc. Corros. Prot., 2009, 29, p 442–446

    Google Scholar 

  23. B.B. Wang, Z.Y. Wang, W. Han, and W. Ke, Atmospheric Corrosion of Aluminium Alloy 2024-T3 Exposed to Salt Lake Environment in Western China, Corros. Sci., 2012, 59, p 63–70

    Article  Google Scholar 

  24. D.D.L. Fuente, E. Otero-Huerta, and M. Morcillo, Studies of Long-Term Weathering of Aluminium in the Atmosphere, Corros. Sci., 2007, 49, p 3134–3148

    Article  Google Scholar 

  25. C. Vargel, Corrosion of Aluminum, Dunod, Paris, 1999

    Google Scholar 

  26. S.A. Barter and L. Molent, Fatigue Cracking from a Corrosion Pit in an Aircraft Bulkhead, Eng. Fail. Anal., 2014, 39, p 155–163

    Article  Google Scholar 

  27. M. Liao, G. Renaud, and N.C. Bellinger, Fatigue Modeling for Aircraft Structures Containing Natural Exfoliation Corrosion, Int. J. Fatigue, 2007, 29, p 677–686

    Article  Google Scholar 

  28. G.J. Stephen, T. Pasang, and B.P. Withy, The Effect of Pitting Corrosion on Split Sleeve Cold Hole Expanded, Bare 7075-T651 Aluminum Alloy, J. Manuf. Process., 2013, 15, p 115–120

    Article  Google Scholar 

  29. S.P. Knight, M. Salagaras, and A.R. Trueman, The Study of Intergranular Corrosion in Aircraft Aluminium Alloys Using X-ray Tomography, Corros. Sci., 2011, 53, p 727–734

    Article  Google Scholar 

  30. M. Posada, L.E. Murr, C.S. Niou, D. Roberson, D. Little, R. Arrowood, and D. George, Exfoliation and Related Microstructures in 2024 Aluminum Body Skins on Aging Aircraft, Mater. Charact., 1997, 38, p 259–272

    Article  Google Scholar 

  31. J. Wloka, T. Hack, and S. Virtanen, Influence of Temper and Surface Condition on the Exfoliation Behaviour of High Strength Al-Zn-Mg-Cu Alloys, Corros. Sci., 2007, 49, p 1437–1449

    Article  Google Scholar 

  32. ISO/TC 156, Corrosion of Metals and Alloys, Determination of Bimetallic Corrosion in Outdoor Exposure Corrosion Tests, in ISO 7441, 1984.

  33. ISO/TC 156, Corrosion of Metals and Alloys, Removal of Corrosion Products from Corrosion Test Specimens, in ISO 8407, 1991.

  34. United States Department of Defense, Aircraft Structural Integrity Program, in MIL-STD-1530C (USAF), 2005.

  35. United States Department of Defense. System safety. In MIL-STD-882E, 2012.

  36. D.L. Simpson and C.L. Brooks, Tailoring the Structural Integrity Process to Meet the Challenges of Aging Aircraft, Int. J. Fatigue, 1999, 21, p S1–S14

    Article  Google Scholar 

  37. D.G. Harlow and R.P. We, A Probability Model for the Growth of Corrosion Pits in Aluminum Alloys Induced by Constituent Particles, Eng. Fract. Mech., 1998, 59, p 305–325

    Article  Google Scholar 

  38. X.H. Yang, W.X. Yao, and Y.L. Chen, Research on Mechanical Properties of LY12CZ Aluminum Alloy under Calendar Corrosion Environment, J. Mech. Strength, 2003, 25, p 227–228

    Google Scholar 

  39. Y.L. Hu, D. Li, and B.L. Guo, Statistical Study of Corrosion Dynamics Law and Method to Predict Calendar Life for LY12CZ Aluminum Alloy, Acta Aeronaut. Astronaut. Sin., 2000, 21, p 53–57

    Google Scholar 

  40. W.J. Xie, D. Li, Y.L. Hu, and B.L. Guo, Statistical Study of Corrosion Kinetics Law for LY12CZ and 7075T7351 Aluminum Alloy in EXCO Solution, Acta Aeronaut. Astronaut. Sin., 1999, 20, p 34–38

    Google Scholar 

  41. Y.L. Chen, G.Z. Lu, and C.M. Duan, A Probability Model for the Corrosion Damage of Aircraft Structure in Service Environment, Acta Aeronaut. Astronaut. Sin., 2002, 23, p 249–251

    Google Scholar 

  42. Y.L. Chen, X.H. Yang, and H.Q. Qin, Study on Corrosion Distribution Law of Aircraft Structure, Mater. Sci. Eng., 2002, 20, p 378–380

    Article  Google Scholar 

  43. C.Y. Chen, Fatigue and Fracture, Huazhong University of Science and Technology Press, Wuhan, 2002

    Google Scholar 

  44. X.Z. Fang, Y.H. Wu, S.Z. Sun, Z.F. Yu, W.X. Ding, Z.F. Zhou, et al, Lower Confidence Limit of Reliability for Complete Sample from Normal Distribution, in GB/T 4885-2009, 2009.

  45. Standardization Administration of the People’s Republic of China, Lower Confidence Limit of Reliability for Complete Sample from Normal Distribution, in GB/T 4885, 2009.

  46. P. Marcus, J. Oudar, Eds., Corrosion Mechanism in Theory and Practice, Marcel Dekker, Inc., New York, 1995.

  47. S.I. Pyun, S.M. Moon, S.H. Ahn, and S.S. Kim, Effects of Cl, NO3 , and SO4 2− Ions on Anodic Dissolution of Pure Aluminum in Alkaline Solution, Corros. Sci., 1999, 41, p 653–667

    Article  Google Scholar 

  48. F.X. Song, X.M. Zhang, S.D. Liu, N.M. Han, and D.F. Li, Anisotropy of Localized Corrosion in 7075-T7451 Al Alloy Thick Plate, Trans. Nonferrous Metal. Soc., 2013, 23, p 2483–2490

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this study was Granted by National Natural Science Foundation of China (51475470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuting He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., He, Y., Cui, R. et al. Long-Term Atmospheric Corrosion of Aluminum Alloy 2024-T4 in a Coastal Environment. J. of Materi Eng and Perform 24, 2764–2773 (2015). https://doi.org/10.1007/s11665-015-1541-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1541-y

Keywords

Navigation