Journal of Materials Engineering and Performance

, Volume 24, Issue 8, pp 3008–3017 | Cite as

Effect of Nb on Microstructures and Mechanical Properties of an Ultrafine-Grained Dual Phase Steel

  • Ali Ghatei Kalashami
  • Ahmad Kermanpur
  • Abbas Najafizadeh
  • Yousef Mazaheri
Article

Abstract

The effect of Nb addition from 0.06 to 0.18 wt.% on microstructural evolutions, mechanical properties, strain-hardening behavior, and fracture mechanism of an ultrafine-grained dual phase (UFG-DP) steel was investigated. The DP steels were cold rolled up to 80% thickness reduction followed by intercritical annealing at 770 °C for 6 min to form the UFG structures. Results showed that increasing Nb content up to 0.12 wt.% increased the volume fraction of martensite and decreased the average grain size of ferrite; however, lower martensite content with no further grain refinement was detected in the steel containing 0.18 wt.% Nb. The variations of strength, elongation, strain-hardening exponent, and fracture behavior of the Nb-bearing UFG-DP specimens were explained in terms of the microstructural features. The UFG-DP steel containing 0.12 wt.% Nb showed a superior strength-elongation balance (UTS × UE ≈ 116 MPa) compared to both the as-received ferritic-pearlitic and the commercially used DP980 steels.

Keywords

dual phase steels grain refinement Nb microalloying element thermomechanical processing 

References

  1. 1.
    F. Ozturk, A. Polat, S. Toros, and R. Picu, Strain Hardening and Strain Rate Sensitivity Behaviors of Advanced High Strength Steels, J. Iron Steel Res. Int., 2013, 20, p 68–74CrossRefGoogle Scholar
  2. 2.
    K. Sato, Q. Yu, J. Hiramoto, T. Urabe, and A. Yoshitake, Method to Investigate Strain Rate Effects on Necking and Fracture Behaviors of Advanced High-Strength Steels Using Digital Imaging Strain Analysis, Int. J. Impact Eng., 2014, 75, p 11–26CrossRefGoogle Scholar
  3. 3.
    C.D. Horvath, Advanced Steels for Lightweight Automotive Structures, Materials, Design and Manufacturing for Lightweight Vehicles, P.K. Mallick, Ed., Woodhead Publishing, Cambridge, 2010, p 35-78Google Scholar
  4. 4.
    R. Kuziak, R. Kawalla, and S. Waengler, Advanced High Strength Steels for Automotive Industry, Arch. Civ. Mech. Eng., 2008, 8, p 103–117CrossRefGoogle Scholar
  5. 5.
    W. Bleck, Cold-Rolled High-Strength Sheet Steels for Auto Applications, JOM., 1996, 48, p 26–30CrossRefGoogle Scholar
  6. 6.
    X. Cai, C. Liu, and Z. Liu, Process Design and Prediction of Mechanical Properties of Dual Phase Steels with Prepositional Ultra Fast Cooling, Mater. Des., 2014, 53, p 998–1004CrossRefGoogle Scholar
  7. 7.
    W. Bleck, A. Frehn, and J. Ohlert, Niobium in Dual Phase and Trip Steels, International Symposium on Niobium, Orlando, 2001.Google Scholar
  8. 8.
    K. Mukherjee, S. Hazra, and M. Militzer, Grain Refinement in Dual-Phase Steels, Metall. Mater. Trans. A, 2009, 40, p 2145–2159CrossRefGoogle Scholar
  9. 9.
    J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto, Experimental and Numerical Study on Geometrically Necessary Dislocations and Non-homogeneous Mechanical Properties of the Ferrite Phase in Dual Phase Steels, Acta Mater., 2011, 59, p 4387–4394CrossRefGoogle Scholar
  10. 10.
    K.T. Park, S. Han, B. Ahn, D. Shin, Y. Lee, and K.K. Um, Ultrafine Grained Dual Phase Steel Fabricated by Equal Channel Angular Pressing and Subsequent Intercritical Annealing, Scripta Mater., 2004, 51, p 909–913CrossRefGoogle Scholar
  11. 11.
    N. Tsuji, AdvancedSteels: The Recent Scenario in Steel Science and Technology, Y. Weng, H. Dong, and Y. Gan, Ed., Springer, New York, 2011, p 119–129 Google Scholar
  12. 12.
    S.C. Hong and K.S. Lee, Influence of Deformation Induced Ferrite Transformation on Grain Refinement of Dual Phase Steel, Mater. Sci. Eng. A, 2002, 323, p 148–159CrossRefGoogle Scholar
  13. 13.
    E. Ahmad, T. Manzoor, and N. Hussain, Thermomechanical Processing in the Intercritical Region and Tensile Properties of Dual-Phase Steel, Mater. Sci. Eng. A, 2009, 508, p 259–265CrossRefGoogle Scholar
  14. 14.
    Y.D. Huang, W.Y. Yang, and Z.Q. Sun, Formation of Ultrafine Grained Ferrite in Low Carbon Steel by Heavy Deformation in Ferrite or Dual Phase Region, J. Mater. Process. Technol., 2003, 134, p 19–25CrossRefGoogle Scholar
  15. 15.
    N. Nakada, Y. Arakawa, K.S. Park, T. Tsuchiyama, and S. Takaki, Dual Phase Structure Formed by Partial Reversion of Cold-Deformed Martensite, Mater. Sci. Eng. A, 2012, 553, p 128–133CrossRefGoogle Scholar
  16. 16.
    S. Kuang, Y.L. Kang, H. Yu, and R.D. Liu, Effect of Continuous Annealing Parameters on the Mechanical Properties and Microstructures of a Cold Rolled Dual Phase Steel, Int. J. Min. Metal. Mater., 2009, 16, p 159–164CrossRefGoogle Scholar
  17. 17.
    D. Bhattacharya and N. Fonstein, Niobium Bearing Advanced Sheet Steels for Automotive Applications at ArcelorMittal, International Symposium on Nb-bearing Steel Technology Development. East Chicago, Indiana, 2005Google Scholar
  18. 18.
    F.R. Xiao, Y.B. Cao, G.Y. Qiao, and X.B. Zhang, Effect of Nb Solute and NbC Precipitates on Dynamic or Static Recrystallization in Nb Steels, J. Iron Steel Res. Int., 2012, 19, p 52–56CrossRefGoogle Scholar
  19. 19.
    J.C. Cao, Q.Y. Liu, Q.L. Yong, and X.J. Sun, Effect of Niobium on Isothermal Transformation of Austenite to Ferrite in HSLA Low-Carbon Steel, J. Iron Steel Res. Int., 2007, 14, p 52–56CrossRefGoogle Scholar
  20. 20.
    H. Niakan and A. Najafizadeh, Effect of Niobium and Rolling Parameters on the Mechanical Properties and Microstructure of Dual Phase Steels, Mater. Sci. Eng. A, 2010, 527, p 5410–5414CrossRefGoogle Scholar
  21. 21.
    J. Lee, S.J. Lee, and B.C. De Cooman, Effect of Micro-alloying Elements on the Stretch-Flangeability of Dual Phase Steel, Mater. Sci. Eng. A, 2012, 536, p 231–238CrossRefGoogle Scholar
  22. 22.
    M. Papa Rao, V.S. Sarma, and S. Sankaran, Development of High Strength and Ductile Ultra Fine Grained Dual Phase Steel with Nano Sized Carbide Precipitates in a V-Nb Microalloyed Steel, Mater. Sci. Eng. A, 2013, 568, p 171–175CrossRefGoogle Scholar
  23. 23.
    Y.L. Kang, Q.H. Han, X.M. Zhao, and M.H. Cai, Influence of Nanoparticle Reinforcements on the Strengthening Mechanisms of an Ultrafine-Grained Dual Phase Steel Containing Titanium, Mater. Des., 2013, 44, p 331–339CrossRefGoogle Scholar
  24. 24.
    P. Chakraborti and M. Mitra, Microstructure and Tensile Properties of High Strength Duplex Ferrite–Martensite (DFM) Steels, Mater. Sci. Eng. A, 2007, 466, p 123–133CrossRefGoogle Scholar
  25. 25.
    R. Song, D. Ponge, D. Raabe, J. Speer, and D. Matlock, Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained BCC Steels, Mater. Sci. Eng. A, 2006, 441, p 1–17CrossRefGoogle Scholar
  26. 26.
    Y. Okitsu, N. Takata, and N. Tsuji, A New Route to Fabricate Ultrafine-Grained Structures in Carbon Steels Without Severe Plastic Deformation, Scripta Mater., 2009, 60, p 76–79CrossRefGoogle Scholar
  27. 27.
    Y.I. Son, Y.K. Lee, K.T. Park, C.S. Lee, and D.H. Shin, Ultrafine Grained Ferrite-Martensite Dual Phase Steels Fabricated via Equal Channel Angular Pressing: Microstructure and Tensile Properties, Acta Mater., 2005, 53, p 3125–3134CrossRefGoogle Scholar
  28. 28.
    L. Ma, Z. Liu, S. Jiao, X. Yuan, and D. Wu, Modeling of Static Recrystallization Kinetics of Nb-Bearing Steels, Acta Metall. Sin. (Engl. Lett.), 2006, 19, p 271–278CrossRefGoogle Scholar
  29. 29.
    M. Calcagnotto, D. Ponge, and D. Raabe, Effect of Grain Refinement to 1 μm on Strength and Toughness of Dual-Phase Steels, Mater. Sci. Eng. A, 2010, 527, p 7832–7840CrossRefGoogle Scholar
  30. 30.
    A.M.J. Junior, L.H. Guedes, and O. Balancin, Ultra Grain Refinement During the Simulated Thermomechanical Processing of Low Carbon Steel, J. Mater. Res. Technol., 2012, 1, p 141–147CrossRefGoogle Scholar
  31. 31.
    R. Song, N. Fonstein, H.J. Jun, N. Pottore, D. Bhattacharya, and S. Jansto, Effects of Nb on Microstructural Evolution and Mechanical Properties of Low-Carbon Cold-Rolled Dual-Phase Steels, Metallogr. Microstruct. Anal., 2014, 3, p p174–p184CrossRefGoogle Scholar
  32. 32.
    H. Ghassemi-Armaki, R. Maab, S. Bhat, and S. Sriram, Deformation Response of Ferrite and Martensite in a Dual-Phase Steel, Acta Mater., 2014, 62, p 197–211CrossRefGoogle Scholar
  33. 33.
    L.R. Bhagavathi, G.P. Chaudhari, and S.K. Nath, Mechanical and Corrosion Behavior of Plain Low Carbon Dual-Phase Steels, Mater. Des., 2011, 32, p 433–440CrossRefGoogle Scholar
  34. 34.
    W. Wang and X. Wei, The Effect of Martensite Volume and Distribution on Shear Fracture Propagation of 600–1000 MPa Dual Phase Sheet Steels in the Process of Deep Drawing, Int. J. Mech. Sci., 2013, 67, p 100–107CrossRefGoogle Scholar
  35. 35.
    M. Asadi, B.C. De Cooman, and H. Palkowski, Influence of Martensite Volume Fraction and Cooling Rate on the Properties of Thermomechanically Processed Dual Phase Steel, Mater. Sci. Eng. A, 2012, 538, p 42–52CrossRefGoogle Scholar
  36. 36.
    M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation Gradients and Geometrically Necessary Dislocations in Ultrafine Grained Dual-Phase Steels Studied by 2D and 3D EBSD, Mater. Sci. Eng. A, 2010, 527, p 2738–2746CrossRefGoogle Scholar
  37. 37.
    M. Mazinani and W.J. Poole, Effect of Martensite Plasticity on the Deformation Behavior of a Low-Carbon Dual-Phase Steel, Metall. Mater. Trans. A, 2007, 38, p 328–339CrossRefGoogle Scholar
  38. 38.
    A. Kumar, S. Singh, and K. Ray, Influence of Bainite/Martensite-Content on the Tensile Properties of Low Carbon Dual-Phase Steels, Mater. Sci. Eng. A, 2008, 474, p 270–282CrossRefGoogle Scholar
  39. 39.
    R. Song, D. Ponge, and D. Raabe, Improvement of the Work Hardening Rate of Ultrafine Grained Steels Through Second Phase Particles, Scripta Mater., 2005, 52, p 1075–1080CrossRefGoogle Scholar
  40. 40.
    P. Movahed, S. Kolahgar, S. Marashi, M. Pouranvari, and N. Parvin, The Effect of Intercritical Heat Treatment Temperature on the Tensile Properties and Work Hardening Behavior of Ferrite–Martensite Dual Phase Steel Sheets, Mater. Sci. Eng. A, 2009, 518, p 1–6CrossRefGoogle Scholar
  41. 41.
    S. Sadagopan and D. Urban, Technology Roadmap Program, American Iron and Steel Institute/U.S. Department of Energy, 2003Google Scholar
  42. 42.
    J.H. Hollomon, Tensile Deformation, Trans. AIME, 1945, 162, p 268–290Google Scholar
  43. 43.
    B. Jaoul, Rapport entre la forme exacte des courbes de traction des métaux et les modifications concomitantes de leur structure, J. Mech. Phys. Solids, 1957, 5, p 95–100CrossRefGoogle Scholar
  44. 44.
    R.E. Reed-Hill, W.R. Cribb, and S.N. Monteiro, Concerning the Analysis of Tensile Stress-Strain Data Using log dσ/dε Versus log σ Diagrams, Metall. Mater. Trans. B, 1973, 4, p 2665–2667CrossRefGoogle Scholar
  45. 45.
    Y. Tomita and K. Okabayashi, Tensile Stress-Strain Analysis of Cold Worked Metals and Steels and Dual-Phase Steels, Metall. Mater. Trans. A, 1985, 16, p 865–872CrossRefGoogle Scholar
  46. 46.
    H.W. Swift, Plastic Instability Under Plane Stress, J. Mech. Phys. Solids, 1952, 1, p 1–18CrossRefGoogle Scholar
  47. 47.
    M.R. Akbarpour and A. Ekrami, Effect of Ferrite Volume Fraction on Work Hardening Behavior of High Bainite Dual Phase (DP) Steels, Mater. Sci. Eng. A, 2008, 477, p 306–310CrossRefGoogle Scholar
  48. 48.
    Z. Zhao, T. Tong, J. Liang, H. Yin, A. Zhao, and D. Tang, Microstructure, Mechanical Properties and Fracture Behavior of Ultra-High Strength Dual-Phase Steel, Mater. Sci. Eng. A, 2014, 608, p 182–188CrossRefGoogle Scholar
  49. 49.
    N.K. Balliger and T. Gladman, Work Hardening of Dual-Phase Steels, Metal. Sci., 1981, 15, p 95–108CrossRefGoogle Scholar
  50. 50.
    N. Saeidi, F. Ashrafizadeh, and B. Niroumand, Development of a New Ultrafine Grained Dual Phase Steel and Examination of the Effect of Grain Size on Tensile Deformation Behavior, Mater. Sci. Eng. A, 2014, 599, p 145–149CrossRefGoogle Scholar
  51. 51.
    M. Sarwar, E. Ahmad, K. Qureshi, and T. Manzoor, Influence of Epitaxial Ferrite on Tensile Properties of Dual Phase Steel, Mater. Des., 2007, 28, p 335–340CrossRefGoogle Scholar
  52. 52.
    D.L. Steinbrunner, D. Matlock, and G. Krauss, Void Formation During Tensile Testing of Dual Phase Steels, Metal. Trans. A, 1988, 19, p 579–589CrossRefGoogle Scholar
  53. 53.
    J. Kadkhodapour, A. Butz, and S. Ziaei-Rad, Mechanisms of Void Formation During Tensile Testing in a Commercial Dual-Phase Steel, Acta Mater., 2011, 59, p 2575–2588CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • Ali Ghatei Kalashami
    • 1
  • Ahmad Kermanpur
    • 1
  • Abbas Najafizadeh
    • 1
  • Yousef Mazaheri
    • 1
    • 2
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Materials EngineeringBu-Ali Sina UniversityHamedanIran

Personalised recommendations