Skip to main content
Log in

Effect of Rhenium Addition on Wear Behavior of Cr-Al2O3 Metal Matrix Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Materials for applications in the automotive industry are required to be strong, stiff, hard, light weight, and wear resistant, which is very difficult to achieve in the case of conventional materials. To meet all these diverse requirements, it is necessary to combine various types of materials (such as metals and ceramics). In the present study, the chromium and chromium-rhenium matrices were reinforced with aluminum oxide to obtain composite materials with improved wear resistance. The composites were fabricated by a powder metallurgy method. The effects of the rhenium addition and volume fraction of aluminum oxide on the wear rate and the friction coefficient of the composites at room temperature were examined in a ball-on-surface apparatus under dry conditions. The worn surfaces and debris were studied by scanning electron microscopy. The final values of the friction coefficient were 0.9 and 0.8 for the Cr-25%Al2O3 and Cr-40%Al2O3 composites, respectively. Alloying Cr matrix with Re improved wear resistance of composite but, at the same time, it caused an increase in its coefficient of friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Mortensen and J. Llorca, Metal Matrix Composites, Ann. Rev. Mater. Res., 2010, 40, p 243–270

    Article  Google Scholar 

  2. R. Prieto, J.M. Molina, J. Narciso, and E. Louis, Thermal Conductivity of Graphite Flakes—SiC Particles/Metal Composites, Compos. Part A, 2011, 42, p 1970–1977

    Article  Google Scholar 

  3. A. Rodriguez-Guerrero, S.A. Sanchez, J. Narciso, E. Louis, and F. Rodriguez-Reinoso, Pressure Infiltration of Al—12 wt.% Si–X (X = Cu, Ti, Mg) Alloys into Graphite Particle Preforms, Acta Mater., 2006, 54, p 1821–1831

    Article  Google Scholar 

  4. K.K. Chawla and N. Chawla, Automotive composites, Encyclopedia of Composites, Vol 1, L. Nicolais and A. Borzacchiello, Ed., Wiley, Hoboken, 2012, p 72–77

    Google Scholar 

  5. V.M. Kryachek, Friction Composites: Tradition and New Solutions (Review) II, Compos. Mater. Powder Metall. Met. Cer., 2005, 44(1–2), p 5–16

    Article  Google Scholar 

  6. N. Natarajan, S. Vijayarangan, and I. Rajendran, Wear Behavior of A356/25SiCp Aluminium Matrix Composites Sliding Against Automobile Friction Material, Wear, 2006, 261, p 812–822

    Article  Google Scholar 

  7. J. Jiang, J. Dai, H. Yang, and Q. Wang, Wear Behavior of Cu Matrix Composites Reinforced with Mixture of Carbon and Carbon Nanotubes, J. Wuhan Univ. Technol., 2009, 24(2), p 54–257

    Article  Google Scholar 

  8. M. Chmielewski and K. Pietrzak, Processing, Microstructure and Mechanical Properties of Al2O3-Cr Nanocomposites, J. Eur. Ceram. Soc., 2007, 27(2–3), p 1273–1279

    Article  Google Scholar 

  9. A. Strojny-Nedza and K.Pietrzak, Processing, Microstructure and Properties of Different Method Obtained Cu-Al2O3 Composites, Arch. Metall. Mater., 2014, 59(4), p 1301–1306  

    Google Scholar 

  10. W. Włosiński, Al 2 O 3 -Cu and Al 2 O 3 -Cr Composite Technology and properties, Sintered Metal—Ceramic Composite, Materials Science Monographs 25, G.S. Upadhyaya, Amsterdam, 1984

    Google Scholar 

  11. W. Węglewski, M. Basista, M. Chmielewski, and K. Pietrzak, Modelling of Thermally Induced Damage in the Processing of Cr-Al2O3 Composites, Compos. Part B, 2012, 43, p 255–264

    Article  Google Scholar 

  12. Y. Ji and J.A. Yeomans, Processing and Mechanical Properties of Al2O3-5%Cr (vol.%) Nanocomposites, J. Eur. Ceram. Soc., 2002, 22, p 1927–1936

    Article  Google Scholar 

  13. G. Geandier, A. Hazotte, S. Denis, A. Mocellin, and E. Maire, Microstructural Analysis of Alumina-Chromium Composites by X-Ray Tomography and 3-D Finite Element Simulation of Thermal Stresses, Scripta Mater., 2003, 48, p 1219–1224

    Article  Google Scholar 

  14. F. Liu and J. Jia, Tribological Properties and Wear Mechanisms of NiCr-Al2O3-SrSO4-Ag Self-Lubricang Composites at Elevated Temperatures, Tribol. Lett., 2013, 49, p 281–290

    Article  Google Scholar 

  15. P. Caron and T. Khan, Evolution of Ni-Based Superalloys for Single Crystal Gas Turbine Blade Applications, Aerosp. Sci. Technol., 1999, 3, p 513–523

    Article  Google Scholar 

  16. V. Petrovich, M. Haurylau, and S. Volchek, Rhenium Deposition on Silicon Surface at the Room Temperature for Application in Microsystems, Senso.r Actuat. A, 2002, 99, p 45–48

    Article  Google Scholar 

  17. R. Kojima, H. Enomoto, M. Muhler, and K. Aika, Cesium-Promoted Rhenium Catalysts Supported on Alumina for Ammonia Synthesis, Appl. Catal. A, 2003, 246, p 311–322

    Article  Google Scholar 

  18. J. Roger, F. Audubert, and Y. Le Petitcorps, Thermal Reactions of SiC Films with Mo, Re and Mo-Re Alloys, J. Alloy Compd., 2009, 475, p 635–642

    Article  Google Scholar 

  19. I. Garbar, Gradation of Oxidation Wear of Metals, Tribol. Int., 2002, 35, p 749–755

    Article  Google Scholar 

  20. C. Duriez, Rhenium Oxidation by Steam at High Temperatures, Oxid. Met., 2004, 6(1–2), p 49–67

    Article  Google Scholar 

  21. K.N. Sun, X.N. Hu, J.H. Zhang, and J.R. Wang, Electrodeposited Cr-Al2O3 Composite Coating for Wear Resistance, Wear, 1996, 196, p 295–297

    Article  Google Scholar 

  22. M. Chmielewski, K. Pietrzak, A. Strojny-Nedza, B. Dubiel, and A. Czyrska-Filemonowicz, Effect of Rhenium Addition on the Strengthening of Chromium-Alumina Composite Materials, Int. J. Mater. Res., 2014, 105(2), p 200–207

    Article  Google Scholar 

  23. M. Chmielewski, D. Kalinski, K. Pietrzak, and W. Włosinski, Relationship Between Mixing Conditions and Properties of Sintered 20AlN/80Cu Composite Materials, Arch. Metall. Mater., 2010, 55(2), p 579–585

    Google Scholar 

  24. D. Kaliński, M. Chmielewski, and K. Pietrzak, An Influence of Mechanical Mixing and Hot-Pressing on Properties of NiAl/Al2O3 Composite, Arch. Metall. Mater., 2012, 57(3), p 694–702

    Google Scholar 

  25. Z. Zhixiang and Z. Junyan, Electrodeposition and Tribological Behavior of Amorphous Chromium-Alumina Composite Coatings, Surf. Coat. Technol., 2008, 202, p 2725–2730

    Article  Google Scholar 

  26. T. Fett and D. Munz, Subcritical Crack Growth of Macrocracks in Alumina with R-Curve Behavior, J. Am. Ceram. Soc., 1992, 75, p 958–963

    Article  Google Scholar 

  27. D. Mikhailova, H. Ehrenberg, D. Trots, G. Brey, S. Oswald, and H. Fuess, Cr x Re1−x O2 Oxides with Different Rutile-Like Structures: Changes in the Electronic Configuration and Resulting Physical Properties, J. Solid State Chem., 2009, 182, p 1506–1514

    Article  Google Scholar 

  28. C. Zhimin, L. Xinchun, and H. Dannong, Atomic Layer Deposition of Zinc Oxide Films: Effects of Nanocrystalline Characteristics on Tribological Performance, Surf. Coat. Technol., 2012, 207, p 361–366

    Article  Google Scholar 

  29. S. Mezlini, M. Zidi, H. Arfa, M.B. Tkaya, and P. Kapsa, Experimental, Numerical and Analytical Studies of Abrasive Wear: Correlation Between Wear Mechanisms and Friction Coefficient, CR Mecanique, 2005, 333, p 830–837

    Article  Google Scholar 

  30. C. Garcia-Cordovilla, J. Narciso, and E. Louis, Abrasive Wear Resistance of Aluminium Alloy Ceramic Particulate Composites, Wear, 1996, 192(1–2), p 170–177

    Article  Google Scholar 

  31. E. Rabinowicz, Friction and Wear Properties of Rhenium, Wear, 1967, 10(4), p 313–318

    Article  Google Scholar 

  32. F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Clarendon Press, Oxford, 1950

    Google Scholar 

Download references

Acknowledgments

The results presented in this paper have been obtained from the project “KomCerMet” (contract No. POIG. 01.03.01-14-013/08-00 with the Polish Ministry of Science and Higher Education) within the framework of the Operational Programme for Innovative Economy 2007-2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Chmielewski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chmielewski, M., Piątkowska, A. Effect of Rhenium Addition on Wear Behavior of Cr-Al2O3 Metal Matrix Composites. J. of Materi Eng and Perform 24, 1871–1880 (2015). https://doi.org/10.1007/s11665-015-1462-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1462-9

Keywords

Navigation