Journal of Materials Engineering and Performance

, Volume 24, Issue 4, pp 1573–1580 | Cite as

Correlation of Mechanical Properties with Fracture Surface Features in a Newly Developed Dual-Phase Steel

  • Y. Mazaheri
  • N. Saeidi
  • A. Kermanpur
  • A. Najafizadeh


Dual-phase (DP) steels were produced by a newly developed method utilizing simple cold-rolling and subsequent short intercritical annealing of a martensite-ferrite duplex starting structure. Tensile testing revealed an excellent strength-elongation balance (UTS × UE ≈ 110-150 J/cm3) for the DP steels in comparison with the commercially used high strength steels. Fracture surfaces of the tensile specimens were studied by scanning electron microscopy analysis and image processing. Mechanical properties were correlated with fracture surface features. It was found that the variation of the total elongation and strength-elongation balance with the martensite volume fraction could be well correlated with the variation of the average dimple area. The variation of the yield strength and dimple areal density with the martensite volume fraction followed the same trend.


dual-phase steel fracture surface analysis mechanical properties 


  1. 1.
    N. Saeidi, F. Ashrafizadeh, and B. Niroumand, Development of a New Ultrafine Grained Dual Phase Steel and Examination of the Effect of Grain Size on Tensile Deformation Behavior, Mater. Sci. Eng. A, 2014, 599, p 145–149CrossRefGoogle Scholar
  2. 2.
    M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and Fracture Mechanisms in Fine- and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, Acta Mater., 2011, 59, p 658–670CrossRefGoogle Scholar
  3. 3.
    M. Calcagnotto, D. Ponge, and D. Raabe, Effect of Grain Refinement to 1 μm on Strength and Toughness of Dual-Phase Steels, Mater. Sci. Eng. A, 2010, 527, p 7832–7840CrossRefGoogle Scholar
  4. 4.
    Y.I. Son, Y.K. Lee, K.T. Park, C.S. Lee, and D.H. Shin, Ultrafine Grained Ferrite-martensite Dual Phase Steels Fabricated via Equal Channel Angular Pressing: Microstructure and Tensile Properties, Acta Mater., 2005, 53, p 3125–3134CrossRefGoogle Scholar
  5. 5.
    M. Erdogan, The Effect of New Ferrite Content on the Tensile Fracture Behaviour of Dual Phase Steels, J. Mater. Sci., 2002, 37, p 3623–3630CrossRefGoogle Scholar
  6. 6.
    C. Landron, O. Bouaziz, E. Maire, and J. Adrien, Characterization and Modeling of Void Nucleation by Interface Decohesion in Dual Phase Steels, Scripta Mater., 2010, 63, p 973–976CrossRefGoogle Scholar
  7. 7.
    C. Landron, E. Maire, O. Bouaziz, J. Adrien, L. Lecarme, and A. Bareggi, Validation of Void Growth Models Using X-ray Microtomography Characterization of Damage in Dual Phase Steels, Acta Mater., 2011, 59, p 7564–7573CrossRefGoogle Scholar
  8. 8.
    D.L. Steinbrunner, D.K. Matlock, and G. Krauss, Void Formation During Tensile Testing of Dual Phase Steels, Metall. Trans., 1988, 19, p 579–589CrossRefGoogle Scholar
  9. 9.
    I.G. Park and A.W. Thompson, Ductile Fracture in Spheroidized 1520 Steel, Acta Metall., 1988, 36, p 1653–1664CrossRefGoogle Scholar
  10. 10.
    A. Das, S.K. Das, and S. Tarafder, Correlation of Fractographic Features with Mechanical Properties in Systematically Varied Microstructures of Cu-Strengthened High-Strength Low-Alloy Steel, Metall. Trans., 2009, 40, p 3138–3146CrossRefGoogle Scholar
  11. 11.
    A. Das and S. Tarafder, Geometry of Dimples and Its Correlation with Mechanical Properties in Austenitic Stainless Steel, Scripta Mater., 2008, 59, p 1014–1017CrossRefGoogle Scholar
  12. 12.
    S. Sodjit and V. Uthaisangsuk, Microstructure Based Prediction of Strain Hardening Behavior of Dual Phase Steels, Mater. Des., 2012, 41, p 370–379CrossRefGoogle Scholar
  13. 13.
    J. Qu, W. Dabboussi, F. Hassani, J. Nemes, and S. Yue, Effect of Microstructure on Static and Dynamic Mechanical Property of a Dual Phase Steel Studied by Shear Punch Testing, ISIJ Int., 2005, 45, p 1741–1746CrossRefGoogle Scholar
  14. 14.
    H. Azizi-Alizamini, M. Militzer, and W.J. Poole, Formation of Ultrafine Grained Dual Phase Steels Through Rapid Heating, ISIJ Int., 2011, 51, p 958–964CrossRefGoogle Scholar
  15. 15.
    R.G. Davies, Influence of Martensite Composition and Content on the Properties of Dual Phase Steels, Metall. Trans. A, 1978, 9, p 671–679CrossRefGoogle Scholar
  16. 16.
    G.R. Speich, R.L. Miller, Mechanical Properties of Ferrite-Martensite Steels. Structure and Properties of Dual-Phase Steels, R.A. Kot, J.W. Morris, Ed., TMS-AIME, New York, 1979, p 145–82Google Scholar
  17. 17.
    M. Asadi, B.C. De Cooman, and H. Palkowsk, Influence of Martensite Volume Fraction and Cooling Rate on the Properties of Thermomechanically Processed Dual Phase Steel, Mater. Sci. Eng. A, 2012, 538, p 42–52CrossRefGoogle Scholar
  18. 18.
    A.R. Marder, The Effect of Heat Treatment on the Properties and Structure of Molybdenum and Vanadium Dual-Phase Steels, Metall. Trans. A, 1981, 12, p 1569–1579CrossRefGoogle Scholar
  19. 19.
    Z. Fan and A.P. Miodownik, An Empirical Approach to Strain to Fracture of Two-Ductile-Phase Alloys, Scripta Metall., 1993, 28, p 895–900CrossRefGoogle Scholar
  20. 20.
    R. Mohan and C. Marschall, Cracking Instabilities in a Low-Carbon Steel Susceptible to Dynamic Strain Aging, Acta Mater., 1998, 46, p 1933–1948CrossRefGoogle Scholar
  21. 21.
    M. Azuma, S. Goutianos, N. Hansen, G. Winther, and X. Huang, Effect of Hardness of Martensite and Ferrite on Void Formation in Dual Phase Steel, Mater. Sci. Technol., 2012, 28, p 1092–1100CrossRefGoogle Scholar
  22. 22.
    M. Mazinani and W.J. Poole, Effect of Martensite Plasticity on the Deformation Behaviour of a Low-Carbon Dual-Phase Steel, Metall. Mater. Trans. A, 2007, 38, p 328–339CrossRefGoogle Scholar
  23. 23.
    N. Saeidi, F. Ashrafizadeh, B. Niroumand, and F. Barlat, Evaluation of Fracture Micromechanisms in a Fine Grained Dual Phase Steel During Uniaxial Tensile Deformation, Steel Res. Int., 2014, 84, p 1–7Google Scholar
  24. 24.
    J.P. Bandstra and D.A. Koss, On the Influence of Void Clusters on Void Growth and Coalescence During Ductile Fracture, Acta Mater., 2008, 56, p 4429–4439CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • Y. Mazaheri
    • 1
  • N. Saeidi
    • 1
  • A. Kermanpur
    • 1
  • A. Najafizadeh
    • 1
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations