Skip to main content

Correlating Hardness Retention and Phase Transformations of Al and Mg Cast Alloys for Aerospace Applications


The methodology based on correlating hardness and phase transformations was developed and applied to determine the maximum temperature of hardness retention of selected Al-based and Mg-based alloys for aerospace applications. The Al alloys: A356, F357, and C355 experienced 34-66% reduction of the initial hardness, in comparison to 4-22% hardness reduction observed in Mg alloys: QE22A, EV31A, ZE41A, and WE43B after the same annealing to 450 °C. For Al alloys the hardness reduction showed a steep transition between 220 and 238 °C. In contrast, Mg alloys showed a gradual hardness decrease occurring at somewhat higher temperatures between 238 and 250 °C. The hardness data were correlated with corresponding phase transformation kinetics examined by dilatometer and electrical resistivity measurements. Although Mg alloys preserved hardness to higher temperatures, their room temperature tensile strength and hardness were lower than Al alloys. The experimental methodology used in the present studies appears to be very useful in evaluating the softening temperature of commercial Al- and Mg-based alloys, permitting to assess their suitability for high-temperature applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. R. Nadella, D.G. Eskin, Q. Du, and L. Katgerman, Macrosegregation in Direct-Chill Casting of Aluminum Alloys, Prog. Mater. Sci., 2008, 53, p 421–480

    Article  Google Scholar 

  2. C. Taylor, Aircraft Propulsion, Smithsonian Institution Press, Washington, DC, 1971

    Google Scholar 

  3. A. Sachdev, R. Mishra, A. Mahato, and A. Alpas, Vehicle Lightweighting: Challanges and Opportunities with Aluminum, 13th International Conference on Aluminum Alloys (ICAA13), 2012, p. 609–622

  4. W. Kasprzak, B. Amirkhiz, and M. Niewczas, Structure and Properties of Cast Al-Si Based Alloy with Zr-V-Ti Additions and Its Evaluation of High Temperature Performance, J. Alloys Compd., 2014, 595, p 67–79

    Article  Google Scholar 

  5. M. Pekguleryuz and M. Celikin, Creep Resistance in Mg Based Alloys, Int. Mater. Rev., 2010, 55(4), p 199–217

    Article  Google Scholar 

  6. F. Czerwinski, The Oxidation Behaviour of an AZ91D Magnesium Alloy at High Temperature, Acta Mater., 2002, 50, p 2639–2654

    Article  Google Scholar 

  7. M. Hoeschl, W. Wagener, and J. Wolf, BMW’s Magnesium-Aluminum Composite Crankcase, State-of-the-Art Light Metal Casting and Manufacturing, SAE Technical Paper 2006-01-0069, 2006, doi:10.4271/2006-01-0069

  8. J. Williams and E. Starke, Progress in Structural Materials for Aerospace Systems, Acta Mater., 2003, 51, p 5775–5799

    Article  Google Scholar 

  9. K. Knipling, D. Dunand, and D. Seidman, Precipitation Evolution in Al-Zr and Al-Zr-Ti Alloys During Aging at 450-600 °C, Acta Mater., 2008, 56(56), p 1182–1195

    Article  Google Scholar 

  10. M. Vlach, I. Stulikova, B. Smolna, N. Zaludova, and J. Cerna, Phase Transformation of Isochronally Annealed Mould-Cast and Cold-Rolled Al-Sc-Zr Based Alloy, J. Alloys Compd., 2010, 492(1–2), p 143–148

    Article  Google Scholar 

  11. M. Niewczas, Z.S. Basinski, S.J. Basinski, and J.D. Embury, Deformation of Copper Single Crystals to Large Strains at 4.2 K: I. Mechanical Response and Electrical Resistivity, Philos. Mag., 2001, 81, p 1121–1142

    Article  Google Scholar 

  12. M. Hafiz and T. Kobayashi, Mechanical Properties and Fracture of Aluminum Casting Alloys, Int. J. Mater. Prod. Technol., 1999, 14(2–4), p 199–216

    Google Scholar 

  13. M. Kasprzak, W. Kasprzak, W. Kierkus, and J. Sokolowski, Method and Apparatus for Universal Metallurgical Simulation and Analysis. US Patent 7,354,491, 2008

  14. S. Iwamura, M. Nakayama, and Y. Miura, Coherency Between Al3Sc Precipitate and the Matrix in Al Alloys Containing Sc, Mater. Sci. Forum, 2002, doi:10.4028/

  15. C. Caceres, C. Davidson, J. Griffiths, L. Hogan, and Q. Wang, Hypoeutectic Al-Si-Mg Foundry Alloys, Mater. Sci. Forum, 1997, 21, p 27–43

    Google Scholar 

  16. J. Kaufman and E. Rooy, Ed., Aluminum Alloy Castings—Properties, Processes and Applications, ASM International, Materials Park, 2004

    Google Scholar 

  17. A. Thirugnanam, K. Sukomaran, K. Raghukandan, U. Pillai, and B. Pai, Microstructural Aspects and Fracture Behaviour of A356/357 Alloys—An Overview, Trans. Indian Inst. Met., 2005, 58(5), p 777–787

    Google Scholar 

  18. M. Tiryakioglu and R. Shuey, Quench sensitivity of an Al-7 wt%Si-0.6 wt%Mg alloy: Characterization and Modeling, Simulation of Aluminum Shape Casting Processing: From Alloy Design to Mechanical Properties, Met. Trans. B, 2007, 38B, p 575–582

    Article  Google Scholar 

  19. P. Keith, Industrial Heating, Technovation, 1997, 64(2), p 51–57

    Google Scholar 

  20. K. Yoshida and R. Arrowood, Microstructure and Mechanical Properties of A356 Aluminum Castings as Related to Various T6-Type Heat Treatments, Light Weight Alloys for Aerospace Applications III, E.W. Lee, N.J. Kim, K.V. Jam, and W.E. Frazier, Ed., The Minerals, Metals and Materials Society, Warrendale, 1995, p 77–88

    Google Scholar 

  21. C. Caceres, I. Svensson, and J. Taylor, Microstructural Factors and the Mechanical Performance of Al-Si-Mg and Al-Si-Cu-Mg Casting Alloys, Proceedings of the 2nd International Aluminum Casting Technology Symposium, ASM International, 1999

  22. M. Zhu, G. Yang, and L. Yao, Effect of T6 heat treatment on the microstructures and the aging behavior of the grain-refined A356 alloys, Adv. Mater. Res., 2011, 143(144), p 1410–1414

    Google Scholar 

  23. J. Li, H. Tan, Z. Shi, and Q. He, Analysis of Mg2Si precipitates in Al–Si–Mg and Al–Mg–Si alloys by FE–SEM, Chin. J. Nonferrous Met., 2008, 18(10), p 1819–1824

    Google Scholar 

  24. G. Mrowka-Nowotnik and J. Sieniawski, Microstructure and Mechanical Properties of C355.0 Cast Aluminum Alloy, Arch. Mater. Sci. Eng., 2011, 47(2), p 85–94

    Google Scholar 

  25. A. Kielbus, Microstructure and Mechanical Properties of Electron 21 Alloy After Heat Treatment, J. Achiev. Mater. Manuf. Eng., 2007, 20(1–2), p 127–130

    Google Scholar 

  26. A. Kielbus, T. Rzychon, and R. Przeliorz, DSC and Microstructural Investigations of the Elektron 21 Magnesium Alloy, Mater. Sci. Forum, 2010, 638–642, p 1447–1452

    Article  Google Scholar 

  27. G. Barucca et al., Formation and Evolution of the Hardening Precipitates in a Mg-Y-Nd Alloy, Acta Mater., 2011, 59(10), p 4151–4158

    Article  Google Scholar 

  28. Elektron WE43—Datasheet 467—Magnesium Elektron, Service and Innovation in Magnesium, Accessed 14 May 2014

  29. ASTM B93/B93M-03, Standard Specification for Magnesium Alloys in Ingot Form for Sand Casting, Permanent Mold Casting, and Die Casting, ASTM International, West Conshohocken, 2003

  30. T. Rzychon and A. Kielbus, Microstructure of WE43 Casting Magnesium Alloy, J. Achiev. Mater. Manuf. Eng., 2007, 21(1), p 31–34

    Google Scholar 

  31. B. Smola and I. Stulikova, Equilibrium and Transient Phases in Mg-Y-Nd Ternary Alloys, J. Alloys Compd., 2004, 381(1–2), p L1–L2

    Article  Google Scholar 

  32. M. Avedesian and H. Baker, Ed., Magnesium and Magnesium Alloys, ASM International, Materials Park, 1999

    Google Scholar 

  33. Y. Riddle, L. Barber, and M. Makhlouf, Characterization of Mg Alloy Solidification and As-Cast Microstructure, Magnesium Technology, TMS, 2004, pp. 203–208

  34. I. Fukui, T. Suzuki, and M. Harada, Characteristics of High Strength Magnesium Casting Alloy QE22A, Kobe Res. Dev., 1982, 32(2), p 52–55

    Google Scholar 

  35. ASTM B80, Nonferrous Metal Standards and Nonferrous Alloy Standards, Standard Specification for Magnesium Alloy Sand Castings, ASTM International, West Conshohocken, 2009

  36. B. Lagowski and J. Meier, Properties of Sand-Cast Magnesium Alloys, Department of Mines and Technical Surveys, Ottawa, 1964

    Google Scholar 

  37. W. Kasprzak and M. Niewczas, Method and Apparatus for High Temperature Performance Assessment of Metal Alloys. Patent US Provisional Patent No: 61/512, 565, 2011

Download references


Financial support of the Materials for Energy End Use in Transformation Program of Natural Resources Canada is gratefully acknowledged. The authors thank also Marta Aniolek M.Sc. Eng. and Renata Zavadil from CanmetMATERIALS for dilatometer, thermal, and metallographic analysis, Ibrahim Sadiq and Mubashir Mir from the University of Waterloo as well as Pushan Lele from Ryerson University for graphical data representation and literature studies. The authors thank also G. Marzano from Magellan Aerospace Company by providing testing material.

Author information

Authors and Affiliations


Corresponding author

Correspondence to W. Kasprzak.

Additional information

Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kasprzak, W., Czerwinski, F., Niewczas, M. et al. Correlating Hardness Retention and Phase Transformations of Al and Mg Cast Alloys for Aerospace Applications. J. of Materi Eng and Perform 24, 1365–1378 (2015).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:


  • Al/Mg cast alloys
  • dilatometer
  • electrical resistivity
  • hardness retention
  • mechanical properties
  • phase transformation