Skip to main content
Log in

Experimental Investigations on Formability of Aluminum Tailor Friction Stir Welded Blanks in Deep Drawing Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, tailor friction stir welded blanks (TFSWBs) were fabricated successfully using 2.0-mm-thick AA5754-H22 and AA5052-H32 sheet metals with optimized tool design and process parameters. Taguchi L9 orthogonal array has been used to design the friction stir welding experiments, and the Grey relational analysis has been applied for the multi objective optimization in order to maximize the weld strength and total elongation reducing the surface roughness and energy consumption. The formability of the TFSWBs and parent materials was evaluated and compared in terms of limiting drawing ratio (LDR) using a conventional circular die. It was found that the formability of the TFSWBs was comparable with that of both the parent materials without failure in the weldment. A modified conical tractrix die (MCTD) was proposed to enhance the LDR of the TFSWBs. It was found that the formability was improved by 27% using the MCTD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.C. Mombo Caristan, V. Lobring, W. Prange, and A. Frings, Tailored Welded Blanks: A New Alternative in Automobile Body Design, Industrial Laser Handbook, Springer, Heidelberg, 1992, p 89–102

    Google Scholar 

  2. M. Merklein, M. Johannes, M. Lechner, and A. Kuppert, A Review on Tailored Blanks—Production, Applications and Evaluation, J. Mater. Process. Technol., 2014, 214, p 151–162

    Article  Google Scholar 

  3. H. Shao, J. Gould, and C. Albright, Laser Blank Welding High-Strength Steels, Metall. Mater. Trans. B, 2007, 38, p 321–331

    Article  Google Scholar 

  4. A.A. Zadpoor, J. Sinke, and R. Benedictus, Mechanics of Tailor Welded Blanks: An Overview, Key Eng. Mater., 2007, 344, p 373–382

    Article  Google Scholar 

  5. S.K. Panda and D. Ravi, Kumar, Experimental and Numerical Studies on the Forming Behavior of Tailor Welded Steel Sheets in Biaxial Stretch Forming, Mater. Des., 2010, 31, p 1083–1365

    Google Scholar 

  6. N. Farabi, D.L. Chen, and Y. Zhou, Tensile Properties and Work Hardening Behavior of Laser-Welded Dual-Phase Steel Joints, J. Mater. Eng. Perform., 2012, 21, p 222–230

    Article  Google Scholar 

  7. J.R. Davis, Aluminum and Aluminum Alloys, 5th ed., ASM International, Materials Park, 1993, p 784

    Google Scholar 

  8. S.S. Birley and P.E. Roper, Fusion Welding of Aluminum Alloys, 4564743, USA, 1986

  9. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, S.P. Temple, and C.J. Dawes, Friction Stir Butt Welding, PCT/GB92/02203, 1991

  10. N. Pathak, K. Bandyopadhyay, M. Sarangi, and S.K. Panda, Microstructure and Mechanical Performance of Friction Stir Spot-Welded Aluminum-5754 Sheets, J. Mater. Eng. Perform., 2013, 22(1), p 131–141

    Article  Google Scholar 

  11. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R Reports, 2005, 50(1), p 1–78

    Article  Google Scholar 

  12. R. Nandan, T. Debroy, and H. Bhadeshia, Recent Advances in Friction-Stir Welding-Process, Weldment Structure and Properties, Prog. Mater Sci., 2008, 53(6), p 980–1023

    Article  Google Scholar 

  13. P.L. Threadgill, A.J. Leonard, H.R. Shercliff, and P.J. Withers, Friction Stir Welding of Aluminium Alloys, Int. Mater. Rev., 2009, 54, p 49

    Article  Google Scholar 

  14. K.V. Jata and S.L. Semiatin, Continuous Dynamic Recrystallization During Friction Stir Welding of High Strength Aluminum Alloys, Scr. Mater., 2000, 43, p 743

    Article  Google Scholar 

  15. L. Fratini, G. Buffa, D. Palmeri, J. Hua, and R. Shivpuri, Material Flow in FSW of AA7075-T6 Butt Joints: Continuous Dynamic Recrystallization Phenomena, J. Eng. Mater. Technol., 2006, 128, p 428

    Article  Google Scholar 

  16. A. Arora, Z. Zhang, A. De, and T. DebRoy, Strains and Strain Rates During Friction Stir Welding, Scr. Mater., 2009, 61, p 863

    Article  Google Scholar 

  17. M.P. Miles, B.J. Decker, and T.W. Nelson, Formability and Strength of Friction Stir Welded Aluminum Sheets, Metall. Mater. Trans. A, 2004, 35A, p 3461

    Article  Google Scholar 

  18. M.P. Miles, D.W. Melton, and T.W. Nelson, Formability of Friction-Stir-Welded Dissimilar-Aluminum-Alloy Sheets, Metall. Mater. Trans. A, 2005, 36, p 3335

    Article  Google Scholar 

  19. Y.S. Sato, Y. Sugiura, Y. Shoji, S.H.C. Park, H. Kokawa, and K. Ikeda, Post-weld Formability of Friction Stir Welded Al Alloy 5052, Mater. Sci. Eng. A, 2004, 369, p 138

    Article  Google Scholar 

  20. T. Hirata, T. Oguri, H. Hagino, T. Tanaka, S.W. Chung, Y. Takigawa, and K. Higashi, Influence of Friction Stir Welding Parameters on Grain Size and Formability in 5083 Aluminum Alloy, Mater. Sci. Eng. A, 2007, 456, p 344

    Article  Google Scholar 

  21. G. Buffa, L. Fratini, J. Hua, and R. Shivpuri, Friction Stir Welding of Tailored Blanks: Investigation on Process Feasibility, CIRP Ann. Manuf. Technol., 2006, 55, p 279

    Article  Google Scholar 

  22. M.B. Silva, M. Skjoedt, P. Vilaça, N. Bay, and P.A.F. Martins, Single Point Incremental Forming of Tailored Blanks Produced by Friction Stir Welding, J. Mater. Process. Technol., 2009, 209, p 811

    Article  Google Scholar 

  23. C. Leitão, B. Emílio, B.M. Chaparro, and D.M. Rodrigues, Formability of Similar and Dissimilar Friction Stir Welded AA5182-H111 and AA6061-T4 Tailored Blanks, Mater. Des., 2009, 30, p 3235

    Article  Google Scholar 

  24. S. Hazra, D. Williams, R. Roy, R. Aylmore, and A. Smith, Effect of Material and Process Variability on the Formability of Aluminium Alloys, J. Mater. Process. Technol., 2011, 211, p 1516

    Article  Google Scholar 

  25. B.L. Juneja, Fundamentals of Metal Forming Processes, New Age International, New Delhi, 2006, p 463

    Google Scholar 

  26. R. Narayanasamy and C. Loganathan, The Influence of Friction on the Prediction of Wrinkling of Prestrained Blanks When Drawing Through a Conical Die, Mater. Des., 2007, 28, p 904

    Article  Google Scholar 

  27. A. Arora, A. De, and T. DebRoy, Toward Optimum Friction Stir Welding Tool Shoulder Diameter, Scr. Mater., 2011, 64, p 9

    Article  Google Scholar 

  28. Z. Hu, S. Yuan, X. Wang, G. Liu, and Y. Huang, Effect of Post-Weld Heat Treatment on the Microstructure and Plastic Deformation Behavior of Friction Stir Welded 2024, Mater. Des., 2011, 32, p 5055–5060

    Article  Google Scholar 

  29. K.N. Krishnan, On the Formation of Onion Rings in Friction Stir Welds, Mater. Sci. Eng. A, 2002, 327, p 246

    Article  Google Scholar 

  30. D.K. Karupannasamy, J. Hol, M.B. de Rooij, T. Meinders, and D.J. Schipper, A Friction Model for Loading and Reloading Effects in Deep Drawing Processes, Wear, 2014, 318, p 27

    Article  Google Scholar 

  31. ASTM E8/E8M-11, Standard Test Methods for Tension Testing of Metallic Materials, Annual Book of ASTM Standards, ASTM, 2012, p 1-27

  32. L.M.A. Hezam, M.A.Ã. Hassan, I.M. Hassab-Allah, and M.G. El-Sebaie, Development of a New Process for Producing Deep Square Cups Through Conical Dies, Int. J. Mach. Tools Manuf, 2009, 49, p 773

    Article  Google Scholar 

  33. A. Fehrenbacher, N.A. Duffie, N.J. Ferrier, F.E. Pfefferkorn, and M.R. Zinn, Toward Automation of Friction Stir Welding Through Temperature Measurement and Closed-Loop Control, J. Manuf. Sci. Eng., 2011, 133, p 051008

    Article  Google Scholar 

  34. H. Zhang, S.B. Lin, L. Wu, J.C. Feng, and S.L. Ma, Defects Formation Procedure and Mathematic Model for Defect Free Friction Stir Welding of Magnesium Alloy, Mater. Des., 2006, 27, p 805

    Article  Google Scholar 

  35. D.K. Leu, The Limiting Drawing Ratio for Plastic Instability of the Cup-Drawing Process, J. Mater. Process. Technol., 1999, 86, p 168–176

    Article  Google Scholar 

  36. R.K. Verma and S. Chandra, An Improved Model for Predicting Limiting Drawing Ratio, J. Mater. Process. Technol., 2006, 172, p 218–224

    Article  Google Scholar 

  37. D. Julong, Introduction to Grey System Theory, J. Grey Syst., 1989, 1, p 1

    Google Scholar 

  38. K. Bandyopadhyay, S.K. Panda, and P. Saha, Investigations Into the Influence of Weld Zone on Formability of Fiber Laser-Welded Advanced High Strength Steel, J. Mater. Eng. Perform., 2014, 23(4), p 1465–1479

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Panda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesharwani, R.K., Panda, S.K. & Pal, S.K. Experimental Investigations on Formability of Aluminum Tailor Friction Stir Welded Blanks in Deep Drawing Process. J. of Materi Eng and Perform 24, 1038–1049 (2015). https://doi.org/10.1007/s11665-014-1361-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1361-5

Keywords

Navigation