Skip to main content
Log in

Fabrication and Characterization of Nitinol-Copper Shape Memory Alloy Bimorph Actuators

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study aims to examine the effect of annealing conditions on nitinol (NiTi) characteristics and applies this knowledge to fabricate a NiTi-copper shape memory alloy bimorph actuator. The effect of the annealing conditions was investigated at various temperatures, i.e., 500, 600, and 650 °C, for 30 min. With the characterizations using x-ray diffraction, energy dispersive spectroscopy, and differential scanning calorimetry techniques, the results showed that annealing temperatures at 600 and 650 °C were able to appropriately form the crystalline structure of NiTi. However, at these high annealing temperatures, the oxide on a surface was unavoidable. In the fabrication of actuator, the annealing at 650 °C for 30 min was chosen, and it was performed at two pre-stressing conditions, i.e., straight and curved molds. From static and dynamic response experiments, the results suggested that the annealing temperature significantly affected the deflection of the actuator. On the other hand, the effect of pre-stressing conditions was relatively small. Furthermore, the micro gripper consisting of two NiTi-copper bimorph actuators successfully demonstrated for the viability of small object manipulation as the gripper was able to grasp and hold a small plastic ball with its weight of around 0.5 mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Krulevitch, A.P. Lee, P.B. Ramsey, J.C. Trevino, J. Hamilton, and M.A. Northrup, Thin Film Shape Memory Alloy Microactuators, J. Microelectromechanical Syst., 1996, 5(4), p 270–282

    Article  Google Scholar 

  2. S. Miyazaki and A. Ishida, Martensitic Transformation and Shape Memory Behavior in Sputter-Deposited TiNi-Base Thin Films, Mater. Sci. Eng., 1999, A273–275, p 106–133

    Article  Google Scholar 

  3. W. Huang, On the Selection of Shape Memory Alloys for Actuators, Mater. Des., 2002, 23, p 11–19

    Article  Google Scholar 

  4. B. Winzek, S. Schmitz, H. Rumpf, T. Sterzl, R. Hassdorf, S. Thienhaus, J. Feydt, M. Moske, and E. Quandt, Recent Developments in Shape Memory Thin Film Technology, Mater. Sci. Eng. A, 2004, 378, p 40–46

    Article  Google Scholar 

  5. Y. Fu, H. Du, W. Huang, S. Zhang, and M. Hu, TiNi-Based Thin Films in MEMS Applications: A Review, Sens. Actuators A, 2004, 112, p 395–408

    Article  Google Scholar 

  6. Y. Bellouard, Shape Memory Alloys for Microsystems: A Review from a Material Research Perspective, Mater. Sci. Eng. A, 2008, 481–482, p 582–589

    Article  Google Scholar 

  7. L. Fumagalli, F. Butera, and A. Coda, SmartFlex® NiTi Wires for Shape Memory Actuators, J. Mater. Eng. Perform., 2009, 18, p 691–695

    Article  Google Scholar 

  8. M. Frotscher, F. Kahleyss, T. Simon, D. Biermann, and G. Eggeler, Achieving Small Structures in thin NiTi Sheets for Medical Applications with Water Jet and Micro Machining: A Comparison, J. Mater. Eng. Perform., 2011, 20, p 776–782

    Article  Google Scholar 

  9. Y.H. Li, M.K. Li, F.L. Meng, and W.T. Zheng, Investigation on Mechanical Properties of Deformation TiNi Thin Films, J. Mater. Eng. Perform., 2012, 21, p 2691–2694

    Article  Google Scholar 

  10. K. Lygin, S. Langbein, P. Labenda, and T. Sadek, Methodology for the Development, Production and Validation of R-Phase Actuators, J. Mater. Eng. Perform., 2012, doi:10.1007/s11665-012-0285-1

    Google Scholar 

  11. E. Makino, T. Mitsuya, and T. Shibata, Fabrication of TiNi Shape Memory Micropump, Sens. Actuators A, 2001, 88, p 256–262

    Article  Google Scholar 

  12. F. Sassa, Y. Al-Zain, T. Ginoza, S. Miyazaki, and H. Suzuki, Miniaturized Shape Memory Alloy Pumps for Stepping Microfluidic Transport, Sens. Actuators B, 2012, 165, p 157–163

    Article  Google Scholar 

  13. S. Takeuchi and I. Shimoyama, A Three-Dimensional Shape Memory Alloy Microelectrode with Clipping Structure for Insect Neural Recording, J. Microelectromechanical Syst., 2000, 9(1), p 24–31

    Article  Google Scholar 

  14. J.J. Gill, D.T. Chang, L.A. Momoda, and G.P. Carman, Manufacturing Issues of Thin Film NiTi Microwrapper, Sensors Actuators A, 2001, 93, p 148–156

    Article  Google Scholar 

  15. Y.Q. Fu, J.K. Luo, S.E. Ong, S. Zhang, A.J. Flewitt, and W.I. Milne, A Shape Memory Microcage of TiNi/DLC Films for Biological Applications, J. Micromech. Microeng., 2008, 18(3), p 035026

    Article  Google Scholar 

  16. C.Y. Chung and P.M. Chan, NiTi Shape Memory Alloy Thin Film Micro-cantilevers Array, Thin Solid Films, 2011, 519, p 5307–5309

    Article  Google Scholar 

  17. X. Wang, Y. Bellouard, and J.J. Vlassak, Laser Annealing of Amorphous NiTi Shape Memory Alloy Thin Films to Locally Induce Shape Memory Peroperties, Acta Mater., 2005, 53, p 4955–4961

    Article  Google Scholar 

  18. Y. Motemani, M.J. Tan, T.J. White, and W.M. Huang, Rapid Thermal Annealing of Ti-Rich TiNi Thin Films: A New Approach to Fabricate Patterned Shape Memory Thin Films, Mater. Des., 2011, 32, p 688–695

    Article  Google Scholar 

  19. A. Pimpin, E. Wongweerayoot, and W. Srituravanich, Two-Step Electroplating Process in Fabrication of Thermal Bimorph Cantilever Actuator for Flow Control Application, Appl. Mech. Mater., 2012, 225, p 367–371

    Article  Google Scholar 

  20. K.T. Liu and J.G. Duh, Hardness Evolution of NiTi and NiTiAl Thin Films Under Various Annealing Temperatures, Surf. Coat. Technol., 2008, 202, p 2737–2742

    Article  Google Scholar 

  21. S. Sanjabi and Z.H. Barber, The Effect of Film Composition on the Structure and Mechanical Properties of NiTi Shape Memory Thin Films, Surf. Coat. Technol., 2010, 204, p 1299–1304

    Article  Google Scholar 

  22. A. Kumar, S.K. Sharma, S. Bysakh, S.V. Kamat, and S. Mohan, Effect of Substrate and Annealing Temperatures on Mechanical Properties of Ti-Rich NiTi Films, J. Mater. Sci. Technol., 2010, 26(11), p 961–966

    Article  Google Scholar 

  23. G.S. Firstov, R.G. Vitchev, H. Kumar, B. Blanpain, and J. Van Humbeeck, Surface Oxidation of NiTi Shape Memory Alloy, Biomaterials, 2002, 23, p 4863–4871

    Article  Google Scholar 

  24. A. Undisz, R. Hanke, and M. Rettenmayr, Effect of Heating Rate on Surface Composition of Annealed NiTi, Shape Memory and Superelastic Technologies, Prague, Czech Republic, 2013

  25. D. Vojtěch, M. Voděrová, J. Fojt, P. Novák, and T. Kubásek, Surface Structure and Corrosion Resistance of Short-Time Heat-Treated NiTi Shape Memory Alloy, Appl. Surf. Sci., 2010, 257, p 1573–1582

    Article  Google Scholar 

  26. P. Surbled, C. Clerc, B. Le Pioufle, M. Ataka, and H. Fujita, Effect of the Composition and Thermal Annealing on the Transformation Temperatures of Sputtered TiNi Shape Memory Alloy Thin Films, Thin Solid Films, 2001, 401, p 52–59

    Article  Google Scholar 

  27. J. Khalil-Allafi, G. Eggeler, A. Dlouhy, W.W. Schmahl, and C. Somsen, On the Influence of Heterogeneous Precipitation on Martensitic Transformations in a Ni-Rich Shape Memory Alloy, Mater. Sci. Eng. A, 2004, 378, p 148–151

    Article  Google Scholar 

Download references

Acknowledgment

This research was financially supported by the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund) and Special Task Force for Activating Research (STAR) of Chulalongkorn University, Thailand through the Micro-Nano Fabrication Technology Research Group (GSTAR 56-005-21-002). In addition, the authors would like to thank Dr. Anurat Wisitsoraat (Microelectronics and MEMS laboratory, NECTEC) and Dr. Tachai Luangvaranunt (Department of Metallurgical Engineering, Chulalongkorn University) for their assistance in sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pimpin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wongweerayoot, E., Srituravanich, W. & Pimpin, A. Fabrication and Characterization of Nitinol-Copper Shape Memory Alloy Bimorph Actuators. J. of Materi Eng and Perform 24, 635–643 (2015). https://doi.org/10.1007/s11665-014-1334-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1334-8

Keywords

Navigation