Skip to main content

Advertisement

Log in

Microstructure Evolution of a Ti-Based Bulk Metallic Glass Composite During Deformation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The deformation behavior of Ti50Zr20Nb12Cu5Be13 bulk metallic glass composite at room temperature was investigated by uniaxial compression tests. The results indicate that the composite exhibits excellent compressive properties at ambient temperature with high fracture strength (about 2425 MPa) and outstanding plasticity (about 23%). All the true stress-strain curves of Ti50Zr20Nb12Cu5Be13 display work-hardening effect with the same tendency which decreases with the increase of the strain. The dendrite morphology almost does not change before yielding, and there are only a few shear bands in the bulk metallic glass composite after yielding. More interestingly, the plastic deformation of dendrites can be observed evidently. Before fracture, the plastic deformation of dendrite becomes more severe, and the dendrite is stretched and more shear bands appear in the composite. Combined with the fracture surface, it can be concluded that the large step shape area, plastic dimple fracture, and shear bands are the evidences of an excellent plasticity in Ti50Zr20Nb12Cu5Be13 bulk metallic glass composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.J. Gilbert, R.O. Ritchie, and W.L. Johnson, Fracture Toughness and Fatigue-Crack Propagation in a Zr-Ti-Ni-Cu-Be Bulk Metallic Galss, Appl. Phys. Lett., 1997, 71, p 476–478

    Article  Google Scholar 

  2. Y. Kawamura, T. Shibata, A. Inoue, and T. Masumoto, Deformation Behavior of Zr65Al10Ni10Cu15 Glassy Alloy with Wide Supercooled Liquid Region, Appl. Phys. Lett., 1996, 69, p 1208–1210

    Article  Google Scholar 

  3. W.L. Johnson, Fundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys, Mater. Sci. Forum, 1996, 225–227, p 35–50

    Article  Google Scholar 

  4. A. Inoue, T. Zhang, and T. Masumoto, Preparation of Bulk Amorphous Zr-Al-Co-Ni-Cu Alloys by Copper Mold Casting and their Thermal and Mechanical Properties, Mater. Trans., JIM, 1995, 36, p 391–398

    Article  Google Scholar 

  5. M.W. Chen, Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility, Annu. Rev. Mater. Res., 2008, 38, p 14–25

    Article  Google Scholar 

  6. W.H. Jiang, F.X. Liu, and P.K. Liaw, Shear Strain in a Shear Band of a Bulk-Metallic Glass in Compression, Appl. Phys. Lett., 2007, 90, p 181903

    Article  Google Scholar 

  7. J.X. Zhao, F.E. Wu, R.T. Qu, S.X. Li, and Z.F. Zhang, Plastic Deformability of Metallic Glass by Macroscopically Artificial Notches, Acta Mater., 2010, 58, p 5420–5432

    Article  Google Scholar 

  8. S. Scudino, K.B. Surreddi, G. Wang, and J. Eckert, Enhanced Plastic Deformation of Zr41.2Ti31.8Cu12.5Ni10Be22.5 Bulk Metallic Glass by the Optimization of Frictional Boundary Restraints, Scripta Mater., 2010, 62, p 750–753

    Article  Google Scholar 

  9. Y. Kawamura, T. Shibata, A. Inoue, and T. Masumoto, Superplastic Deformation of Zr65Al10Ni10Cu15 Metallic Glass, Scripta Mater., 1997, 37, p 431–436

    Article  Google Scholar 

  10. Y. Kawamura, T. Nakamura, and A. Inoue, Superplasticity in Pd40Ni40P20 Metallic Glass, Scripta Mater., 1998, 39, p 301–306

    Article  Google Scholar 

  11. T.G. Nieh and J. Wadsworth, Homogeneous Deformation of Bulk Metallic Glasses, Scripta Mater., 2006, 54, p 387–392

    Article  Google Scholar 

  12. W.L. Johnson, Bulk Glass-Forming Metallic Alloys: Science and Technology, MRS Bull., 1999, 24, p 42–56

    Article  Google Scholar 

  13. A. Inoue, C. Fan, J. Saida, and T. Zhang, High-Strength Zr-Based Bulk Amorphous Alloys Containing Nanocrystalline and Nanoquasicrystalline Particles, Sci. Technol. Adv. Mater., 2000, 1, p 73–86

    Article  Google Scholar 

  14. J.C. Qiao and J.M. Pelletier, Dynamic Mechanical Relaxation in Bulk Metallic Glasses: A Review, J. Mater. Sci. Technol., 2014, 30, p 523–545

    Article  Google Scholar 

  15. H.M. Lin, C.Y. Chen, C.Y. Tsay, C.F. Hsu, and P.Y. Lee, Microstructure and Mechanical Properties of Mechanically Alloyed Al2O3/Ti-Cu-Ni-Sn Bulk Metallic Glass Composites Prepared by Vacuum Hot-Pressing, J. Alloys Compd., 2010, 504S, p S110–S113

    Article  Google Scholar 

  16. S.V. Madge, P. Sharma, D.V. Louzguine-Luzgin, A.L. Greer, and A. Inoue, New La-Based Glass-Crystal Ex Situ Composites with Enhanced Toughness, Scripta Mater., 2010, 62, p 210–213

    Article  Google Scholar 

  17. H.M. Lin, R.R. Jeng, and P.Y. Lee, Microstructure and Mechanical Properties of Vacuum Hot-Pressing SiC/Ti-Cu-Ni-Sn Bulk Metallic Galss Composites, Mater. Sci. Eng., A, 2008, 493, p 246–250

    Article  Google Scholar 

  18. K. Hajlaoui, A.R. Yavari, A. LeMoulec, W.J. Botta, F.G. Vaughan, J. Das, A.L. Greer, and Å. Kvick, Plasticity Induced by Nanoparticle Dispersions in Bulk Metallic Glasses, J. Non-Cryst. Solids, 2007, 353, p 327–331

    Article  Google Scholar 

  19. Y.C. Kim, J.H. Na, J.M. Park, D.H. Kim, J.K. Lee, and W.T. Kim, Role of Nanometer-Scale Quasicrystals in Improving the Mechanical Behavior of Ti-Based Bulk Metallic Glasses, Appl. Phys. Lett., 2003, 83, p 3093–3095

    Article  Google Scholar 

  20. Z.Q. Liu, R. Li, G. Liu, W.H. Su, H. Wang, Y. Li, M.J. Shi, X.K. Luo, G.J. Wu, and T. Zhang, Microstructural Tailoring and Improvement of Mechanical Properties in CuZr-Based Bulk Metallic Glass Composites, Acta Mater., 2012, 60, p 3128–3139

    Article  Google Scholar 

  21. Z.Q. Liu, R. Li, G. Liu, K.K. Song, S. Pauly, T. Zhang, and J. Eckert, Pronounced Ductility in CuZrAl Ternary Bulk Metallic Glass Composites with Optimized Microstructure Through Melt Adjustment, AIP Advances, 2012, 2, p 032176

    Article  Google Scholar 

  22. D.C. Hofmann, Shape Memory Bulk Metallic Glass Composites, Science, 2010, 329, p 1294–1295

    Article  Google Scholar 

  23. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson, Designing Metallic Glass Matrix Composites with High Toughness and Tensile Ductility, Nature, 2008, 451, p 1085–1089

    Article  Google Scholar 

  24. C.C. Hays, C.P. Kim, and W.L. Johnson, Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing In Situ Formed Ductile Phase Dendrite Dispersions, Phys. Rev. Let., 2000, 84, p 2901–2904

    Article  Google Scholar 

  25. D.C. Hofmann, J.Y. Suh, A. Wiest, M.L. Lind, M.D. Demetriou, and W.L. Johnson, Development of Tough, Low-Density Titanium-Based Bulk Metallic Glass Matrix Composites with Tensile Ductility, Proc. Natl. Acad. Sci. USA, 2008, 105, p 20136–20140

    Article  Google Scholar 

  26. Q. Zheng and J. Du, Low Beryllium Content Zr-Based Bulk Metallic Glass Composite with Plasticity and Work Hardenability, J. Appl. Phys., 2014, 115, p 0435-1–0435-9

    Google Scholar 

  27. C. Yang, X.M. Wu, J. Zeng, Y.H. Li, S.G. Qu, and W.P. Chen, Effect of V Content on Microstructure and Mechanical Property of a TiVCuNiAl Composite Fabricated by Spark Plasma Sintering, Mater. Des., 2013, 52, p 655–662

    Article  Google Scholar 

  28. J.B. Li, J.S.C. Jang, C. Li, S.R. Jian, P.H. Tsai, J.D. Hwang, J.C. Huang, and T.G. Nieh, Significant Plasticity Enhancement of ZrCu-Based Bulk Metallic Glass Composite Dispersed by In Situ and Ex Situ Ta Particles, Mater. Sci. Eng., A, 2012, 551, p 249–254

    Article  Google Scholar 

  29. S. Roberts, C. Zachrisson, H. Kozachkov, A. Ullah, A.A. Shapiro, W.L. Johnson, and D.C. Hofmann, Cryogenic Charpy Impact Testing of Metallic Glass Matrix Composites, Scripta Mater., 2012, 66, p 284–287

    Article  Google Scholar 

  30. M. Calin, L.C. Zhang, and J. Eckert, Tailoring of Microstructure and Mechanical Properties of a Ti-Based Bulk Metallic Glass-Forming Alloy, Scripta Mater., 2007, 57, p 1101–1104

    Article  Google Scholar 

  31. P. Gargarella, S. Pauly, M. Samadi Khoshkhoo, U. Kühn, and J. Eckert, Phase Formation and Mechanical Properties of Ti-Cu-Ni-Zr Bulk Metallic Glass Composites, Acta Mater., 2014, 65, p 259–269

    Article  Google Scholar 

  32. J.M. Park, K.R. Lim, E.S. Park, S. Hong, K.H. Park, J. Eckert, and D.H. Kim, Internal Structural Evolution and Enhanced Tensile Plasticity of Ti-Based Bulk Metallic Glass and Composite via Cold Rolling, J. Alloys Compd., 2014, 615, p S113–S117

    Article  Google Scholar 

  33. Z.Y. Zhang, Y. Wu, J. Zhou, H. Wang, X.J. Liu, and Z.P. Lu, Strong Work-Hardening Behavior in a Ti-Based Bulk Metallic Glass Composite, Scripta Mater., 2013, 69, p 73–76

    Article  Google Scholar 

  34. Y.S. Wang, G.J. Hao, J.W. Qiao, Y. Zhang, and J.P. Lin, High Strain Rate Compressive Behavior of Ti-Based Metallic Glass Matrix Composites, Intermetallics, 2014, 52, p 138–143

    Article  Google Scholar 

  35. J.W. Qiao, E.W. Huang, G.Y. Wang, H.J. Yang, W. Liang, Y. Zhang, and P.K. Liaw, Characteristic of Improved Fatigue Performance for Zr-Based Bulk Metallic Glass Matrix Composites, Mater. Sci. Eng., A, 2013, 563, p 101–105

    Article  Google Scholar 

  36. Y.L. Chen, A.M. Wang, H.M. Fu, Z.W. Zhu, H.F. Zhang, Z.Q. Hu, L. Wang, and H.W. Cheng, Preparation, Microstructure and Deformation Behavior of Zr-Based Metallic Glass/Porous SiC Interpenetrating Phase Composites, Mater. Sci. Eng., A, 2011, 530, p 15–20

    Article  Google Scholar 

  37. J.W. Qiao, A.C. Sun, E.W. Huang, Y. Zhang, P.K. Liaw, and C.P. Chuang, Tensile Deformation Micromechanisms for Bulk Metallic Glass Matrix Composites: From Work-Hardening to Softening, Acta Mater., 2011, 59, p 4126–4137

    Article  Google Scholar 

  38. Y.M. Wang, E. Ma, and M.W. Chen, Enhanced Tensile Ductility and Toughness in Nanostructured Cu, Appl. Phys. Lett., 2002, 80, p 2395–2397

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Fund of Northwestern Polytechnical University (JC20120203), the Specialized Research Fund for the Doctoral Program of Higher Education (2013610212007), the Natural Science Foundation of Shaanxi Province (2014JM6234), and the Program of Introducing Talents of Discipline to Universities (B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Li, J.S., Wang, J. et al. Microstructure Evolution of a Ti-Based Bulk Metallic Glass Composite During Deformation. J. of Materi Eng and Perform 24, 748–753 (2015). https://doi.org/10.1007/s11665-014-1320-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1320-1

Keywords

Navigation