Skip to main content

Advertisement

Log in

Blasting and Passivation Treatments for ASTM F139 Stainless Steel for Biomedical Applications: Effects on Surface Roughness, Hardening, and Localized Corrosion

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Due to the combination of good biofunctionality and biocompatibility at low cost, AISI 316 low carbon vacuum melting (LVM) stainless steel, as considered in ASTM F139 standard, is often the first choice for medical implants, particularly for use in orthopedic surgery. Proper surface finish must be provided to ensure adequate interactions of the alloy with human body tissues that in turn allows the material to deliver the desired performance. Preliminary studies performed in our laboratory on AISI 316LVM stainless steel surfaces modified by glass bead blasting (from industrial supplier) followed by different nitric acid passivation conditions disclosed the necessity to extend parameters of the surface treatments and to further consider roughness, pitting corrosion resistance, and surface and subsurface hardening measurements, all in one, as the most effective characterization strategy. This was the approach adopted in the present work. Roughness assessment was performed by means of amplitude parameters, functional parameters, and an estimator of the fractal dimension that characterizes surface topography. We clearly demonstrate that the blasting treatment should be carried out under controlled conditions in order to obtain similar surface and subsurface properties. Otherwise, a variation in one of the parameters could modify the surface properties, exerting a profound impact on its application as biomaterial. A passivation step is necessary to offset the detrimental effect of blasting on pitting corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B.D. Ratner, and A.S. Hoffman, Thin Films, Grafts, and Coatings, Biomaterials Science: An Introduction to Materials in Medicine, 1st ed., B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons, Eds., Academic Press, 1996, p 105–118

  2. C. Aparicio, F.J. Gil, C. Fonseca, M. Barbosa, and J.A. Planell, Corrosion Behaviour of Commercially Pure Titanium Shot Blasted with Different Materials and Sizes of Shot Particles for Dental Implant Applications, Biomaterials, 2003, 24(2), p 263–273

    Article  Google Scholar 

  3. A. Arvidsson, B.A. Sater, and A. Wennerberg, The Role of Functional Parameters for Topographical Characterization of Bone-Anchored Implants, Clin. Implant Dent. Relat Res., 2006, 8(2), p 70–76

    Article  Google Scholar 

  4. V. Barranco, M.L. Escudero, and M.C. García-Alonso, 3D, Chemical and Electrochemical Characterization of Blasted Ti6Al4V Surfaces: Its Influence on the Corrosion Behaviour, Electrochim. Acta, 2007, 52(13), p 4374–4384

    Article  Google Scholar 

  5. V. Barranco, E. Onofre, M.L. Escudero, and M.C. García-Alonso, Characterization of Roughness and Pitting Corrosion of Surfaces Modified by Blasting and Thermal Oxidation, Surf. Coat. Technol., 2010, 204(23), p 3783–3793

    Article  Google Scholar 

  6. M. Multigner, E. Frutos, J.L. González-Carrasco, J.A. Jiménez, P. Marín, and J. Ibáñez, Influence of the Sandblasting on the Subsurface Microstructure of 316LVM Stainless Steel: Implications on the Magnetic and Mechanical Properties, Mater. Sci. Eng. C, 2009, 29(4), p 1357–1360

    Article  Google Scholar 

  7. M. Multigner, S. Ferreira-Barragáns, E. Frutos, M. Jaafar, J. Ibáñez, P. Marín, M.T. Pérez-Prado, G. González-Doncel, A. Asenjo, and J.L. González-Carrasco, Superficial Severe Plastic Deformation of 316 LVM Stainless Steel Through Grit Blasting: Effects on Its Microstructure and Subsurface Mechanical Properties, Surf. Coat. Technol., 2010, 205(7), p 1830–1837

    Article  Google Scholar 

  8. J.C. Galván, L. Saldaña, M. Multigner, A. Calzado-Martín, M. Larrea, C. Serra, N. Vilaboa, and J.L. González-Carrasco, Grit Blasting of Medical Stainless Steel: Implications on its Corrosion Behavior, Ion Release and Biocompatibility, J. Mater. Sci. Mater. Med., 2012, 23(3), p 657–666

    Article  Google Scholar 

  9. B. Arifvianto, S. Wibisono, and M. Mahardika, Influence of Grit Blasting Treatment Using Steel Slag Balls on the Subsurface Microhardness, Surface Characteristics and Chemical Composition of Medical Grade 316L Stainless Steel, Surf. Coat. Technol., 2012, 210, p 176–182

    Article  Google Scholar 

  10. F. Reidenbach, ASM Metals Handbook Volume 5: Surface Engineering, 10th ed., ASM International, 1994

  11. K. Poorna Chander, M. Vashista, K. Sabiruddin, S. Paul, and P.P. Bandyopadhyay, Effects of Grit Blasting on Surface Properties of Steel Substrates, Mater. Des., 2009, 30(8), p 2895–2902

    Article  Google Scholar 

  12. F. Otsubo, K. Kishitake, T. Akiyama, and T. Terasaki, Characterization of Blasted Austenitic Stainless Steel and Its Corrosion Resistance, J. Therm. Spray Technol., 2003, 12(4), p 555–559

    Article  Google Scholar 

  13. A. BenRhouma, H. Sidhom, C. Braham, J. Lédion, and M.E. Fitzpatrick, Effects of Surface Preparation on Pitting Resistance, Residual Stress, and Stress Corrosion Cracking in Austenitic Stainless Steels, J. Mater. Eng. Perform., 2001, 10(5), p 507–514

    Article  Google Scholar 

  14. A.W. Momber and Y.C. Wong, Overblasting Effects on Surface Properties of Low-Carbon Steel, J. Coat. Technol. Res., 2005, 2(6), p 453–461

    Article  Google Scholar 

  15. L.J. Korb, and D.L. Olson, ASM Metals Handbook Volume 13: Corrosion, 9th ed., ASM International, 1987.

  16. A. Wennerberg and T. Albrektsson, Effects of Titanium Surface Topography on Bone Integration: A Systematic Review, Clin. Oral Implants Res., 2009, 20(4), p 172–184

    Article  Google Scholar 

  17. R. Singh and N.B. Dahotre, Corrosion Degradation and Prevention by Surface Modification of Biometallic Materials, J. Mater. Sci. Mater. Med., 2007, 18(5), p 725–751

    Article  Google Scholar 

  18. M.D. Pereda, K.W. Kang, R. Bonetto, C. Llorente, P. Bilmes, and C. Gervasi, Impact of Surface Treatment on the Corrosion Resistance of ASTM F138-F139 Stainless Steel for Biomedical Applications, Proc. Mater. Sci., 2012, 1, p 446–453

    Article  Google Scholar 

  19. E. Ponz, J.L. Ladaga, and R.D. Bonetto, Measuring Surface Topography with Scanning Electron Microscopy. I. EZEImage: A Program to Obtain 3D Surface Data, Microsc. Microanal., 2006, 12(2), p 170–177

    Article  Google Scholar 

  20. P. Bariani, L. De Chiffre, H.N. Hansen, and A. Horsewell, Investigation on the Traceability of Three Dimensional Scanning Electron Microscope Measurements Based on the Stereo-Pair Technique, Precis. Eng., 2005, 29, p 219–228

    Article  Google Scholar 

  21. K.W. Kang, M.D. Pereda, M.E. Canafoglia, P. Bilmes, C. Llorente, and R. Bonetto, Uncertainty Studies of Topographical Measurements on Steel Surface Corrosion by 3D Scanning Electron Microscopy, Micron, 2012, 43, p 387–395

    Article  Google Scholar 

  22. H. Ostadi and K. Jiang, D.W.L. Hukins., A Comparison of Surface Roughness Analysis Methods Applied to Urinary Catheters, Precis. Eng., 2010, 34, p 798–801

    Article  Google Scholar 

  23. ASM, Standard Test Method for Microindentation Hardness of Materials”, E384-99, ASTM Standards

  24. H.C. Man and D.R. Gabe, The Determination of Pitting Potentials, Corros. Sci., 1981, 21(4), p 323–326

    Article  Google Scholar 

  25. M.D. Pereda, C.A. Gervasi, C.L. Llorente, and P.D. Bilmes, Microelectrochemical Corrosion Study of Supermartensitic Welds in Chloride-Containing Media, Corros. Sci., 2011, 53(12), p 3934–3941

    Article  Google Scholar 

  26. K.J. Stout, P.J. Sullivan, W.P. Dong, E. Mainsah, N. Luo, T. Mathia, and H. Zahouani, The Development of Methods for the Characterization of Roughness in Three Dimensions, University of Birmingham, Commission of the European Communities, Great Britain, 1993

    Google Scholar 

  27. W.P. Dong, P.J. Sullivan, and K.J. Stout, Comprehensive Study of Parameters for Characterising Three- Dimensional Surface Topography: III: Parameters for Characterising Amplitude and Some Functional Properties, Wear, 1994, 178(1–2), p 29–43

    Article  Google Scholar 

  28. M. Bigerelle, D. Najjar, T. Mathia, A. Iost, T. Coorevits, and K. Anselme, An Expert System to Characterise the Surfaces Morphological Properties According to their Tribological Functionalities: The Relevance of a Pair of Roughness Parameters, Tribol. Int., 2013, 59, p 190–202

    Article  Google Scholar 

  29. L.T. Brown, “The Use of 3D Surface Analysis Techniques to Investigate the Wear of Matt Surface Finish Femoral Stems in Total Hip Replacement”, Ph.D. Thesis, University of Huddersfield, 2006

  30. C. Cionea, “Microstructural Evolution of Surface Layers during Electrolytic Plasma Processing”, Ph.D. Thesis, University of Texas at Arlington, 2010

  31. M. Niemczewska-Wojcik, The Influence of the Surface Geometric Structure on the Functionality of Implants, Wear, 2011, 271(3–4), p 596–603

    Article  Google Scholar 

  32. J. Löberg, “Integrated Biomechanical, Electronic and Topographic Characterization of Titanium Dental Implants”, Ph.D. Thesis, University of Gothenburg, 2011

  33. M. Faller, S. Buzzi, and O. Trzebiatowski, Corrosion Behaviour of Glass-Bead Blasted Stainless Steel Sheets and Other Sheets with Dull Surface Finish in a Chloride Solution, Mater. Corros., 2005, 56(6), p 373–378

    Article  Google Scholar 

  34. P. O’Hare, B.J. Meenan, G.A. Burke, G. Byrne, D. Dowling, and J.A. Hunt, Biological Responses to Hydroxyapatite Surfaces Deposited Via a Co-Incident Microblasting Technique, Biomaterials, 2010, 31(3), p 515–522

    Article  Google Scholar 

  35. R.A. Gittens, T. McLachlan, R. Olivares-Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K.H. Sandhage, and B.D. Boyan, The Effects of Combined Micron-/Submicron-Scale Surface Roughness and Nanoscale Features on Cell Proliferation and Differentiation, Biomaterials, 2011, 32(13), p 3395–3403

    Article  Google Scholar 

  36. T. Provder and B. Kunz, Application of Profilometry and Fractal Analysis to the Characterization of Coatings Surface Roughness, Prog. Org. Coat., 1996, 27(1–4), p 219–226

    Article  Google Scholar 

  37. S. Amada and T. Hirose, Influence of Grit Blasting Pre-Treatment on the Adhesion Strength of Plasma Sprayed Coatings: Fractal Analysis of Roughness, Surf. Coat. Technol., 1998, 102(1–2), p 132–137

    Article  Google Scholar 

  38. D. Risović, S.M. Poljaček, and M. Gojo, On Correlation Between Fractal Dimension and Profilometric Parameters in Characterization of Surface Topographies, Appl. Surf. Sci., 2009, 255(7), p 4283–4288

    Article  Google Scholar 

  39. X. Liang, B. Lin, X. Han, and S. Chen, Fractal Analysis of Engineering Ceramics Ground Surface, Appl. Surf. Sci., 2012, 258(17), p 6406–6415

    Article  Google Scholar 

  40. R.D. Bonetto, J.L. Ladaga, and E. Ponz, Measuring Surface Topography by Scanning Electron Microscopy. II. Analysis of Three Estimators of Surface Roughness in Second Dimension and Third Dimension, Microsc. Microanal., 2006, 12(2), p 178–186

    Article  Google Scholar 

  41. W.S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, MD, USA, 2012. http://rsb.info.nih.gov/ij/index.html

  42. V. Azar, B. Hashemi, and M. RezaeeYazdi, The Effect of Shot Peening on Fatigue and Corrosion Behavior of 316L Stainless Steel in Ringer’s Solution, Surf. Coat. Technol., 2010, 204(21–22), p 3546–3551

    Article  Google Scholar 

  43. F.J. Gil, J.A. Planell, A. Padrós, and C. Aparicio, The Effect of Shot Blasting and Heat Treatment on the Fatigue Behavior of Titanium for Dental Implant Applications, Dental Mater., 2007, 23(4), p 486–491

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the staff of the Microscopy Laboratory of Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” (CINDECA) for technical support in the acquisition of SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos L. Llorente.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barboza, A.L.L., Kang, K.W., Bonetto, R.D. et al. Blasting and Passivation Treatments for ASTM F139 Stainless Steel for Biomedical Applications: Effects on Surface Roughness, Hardening, and Localized Corrosion. J. of Materi Eng and Perform 24, 175–184 (2015). https://doi.org/10.1007/s11665-014-1300-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1300-5

Keywords

Navigation