Skip to main content

Advertisement

Log in

Development of Ultrafine Grained Zircaloy-2 by Room Temperature Cross Rolling

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Effect of change in strain path by cross rolling up to a true strain of 1.89 has been studied in the present work. The Zircaloy-2 was subjected to solutionising heat treatment at 800 °C in argon environment for 2 h and subsequently quenched in mercury prior to cross rolling at room temperature. The fragmentation of near basal grains due to change in strain path is evident from the EBSD micrographs. The dislocation density in the crossrolled alloy increases with true strain as calculated from the XRD and EBSD data and it is found to be 2.806453 × 1016/m2. \( \left\{ {10\bar{1}2} \right\} \) extension twins are observed initially up to 25% reduction, with the further reduction in thickness, near basal grains are oriented toward the normal direction. These basal grains undergone fragmentation due to changes in strain path upon cross-rolling as observed from KAM and EBSD images. TEM results of the cross-rolled sample confirm the formation of ultrafine and nanograins in the alloy due to orientation of incidental dislocation boundaries in the direction of macroscopic plastic flow and post-annealing treatment of the deformed alloy. A tensile strength of 991 MPa with 7.5% ductility is observed in the 85% cross-rolled alloy. The cross-rolled alloy upon annealing at 400 °C for 30 min improves ductility to 11%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.L. Mehan, F.W. Wiesinger, Mechanical Properties of Zircaloy-2. AEC Research and development report, 1961

  2. E.F. Ibrahim applications-related phenomena for zirconium and its alloys, ASTM STP 458, American Society for Testing and Materials, 1969, p. 18–36

  3. A.R. Massih, M. Dahlback, M. Limback, T. Andersson, and B. Lehtinen, Effect of beta-to-alpha phase transition rate on corrosion behaviour of zircaloy, Corros. Sci., 2006, 48, p 1154–1181

    Article  Google Scholar 

  4. C. Degueldre, J. Raabe, G. Kuri, and S. Abolhassani, Zircaloy-2 secondary phase precipitate analysis by x-ray microspectroscopy, Talanta, 2008, 75, p 402–406

    Article  Google Scholar 

  5. X. Menc and D.O. Northwood, Second phase particles in zircaloy-2, J. Nucl. Mater., 1989, 168, p 125–136

    Article  Google Scholar 

  6. T. Jayakumar, P. Palanichamy, and B. Raj, Detection of hard intermetallics in b-quenched and thermally aged Zircaloy-2 using ultrasonic measurements, J. Nucl. Mater., 1998, 255, p 243–249

    Article  Google Scholar 

  7. G. Ostberg, Crack propagation in hydrided zircaloy-2, Int. J. Fract. Mech., 1968, 4, p 95–98

    Google Scholar 

  8. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater Sci., 2000, 45, p 103–189

    Article  Google Scholar 

  9. Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Mater., 2013, 61, p 782–817

    Article  Google Scholar 

  10. M. Vedani, P. Bassani, A. Tuissi, and G. Angella, Ultrafine grained alloys produced by severe plastic deformation: issues on microstructural control and mechanical behaviour, Metall. Sci. Technol., 2004, 19, p 21–30

    Google Scholar 

  11. A. Shokuhfar and O. Nejadseyfi, The influence of friction on the processing of ultrafine-grained/nanostructured materials by equal-channel angular pressing, J. Mater. Eng. Perform., 2014, 23, p 1038–1048

    Article  Google Scholar 

  12. X. Cheng, T.G. Langdon, Z. Horita, and M. Furukawa, Using equal-channel angular pressing for the production of superplastic aluminum and magnesium alloys, J. Mater. Eng. Perform., 2004, 13, p 683–690

    Article  Google Scholar 

  13. K. Rahimi Mamaghani and M. Kazeminezhad, The effect of direct and cross-rolling on mechanical properties and microstructure of severely deformed aluminum, J. Mater. Eng. Perform., 2014, 23, p 115–124

    Article  Google Scholar 

  14. C. Vanitha, M. Kiran Kumar, G.K. Dey, D. Srivastava, R. Tewari, and S. Banerjee, Recrystallization texture development in single-phase Zircaloy, Mater. Sci. Eng. A, 2009, 519, p 251–260

    Article  Google Scholar 

  15. F. Xu, R.A. Holt, and M.R. Daymond, Modeling lattice strain evolution during uniaxial deformation of textured Zircaloy-2, Acta Mater., 2008, 56, p 3672–3687

    Article  Google Scholar 

  16. D. Lee, Role of plastic anisotropy in the fatigue behavior of zircaloy, Metall. Trans., 1972, 3, p 315–328

    Article  Google Scholar 

  17. R.G. Ballinger and R.M. Pelloux, The effect of anisotropy on the mechanical behavior of Zircaloy-2, J. Nucl. Mater., 1981, 97, p 231–253

    Article  Google Scholar 

  18. P. Mukherjee, A. Sarkar, P. Barat, S.K. Bandyopadhyay, P. Sen, S.K. Chattopadhyay, P. Chatterjee, S.K. Chatterjee, and M.K. Mitra, Deformation characteristics of rolled zirconium alloys: a study by x-ray diffraction line profile analysis, Acta Mater., 2004, 52, p 5687–5696

    Article  Google Scholar 

  19. C.L. Whitmarsh, Oak Ridge National Laboratory Oak Ridge, Tennessee Operated “By Union Carbide Corporation For The US Atomic Energy Commission 1962, ORNL-3281 UC-80-Reactor technology TID-4500 (17th Edition).

  20. S. Goel, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Mechanical and microstructural characterizations of ultrafine grained zircaloy-2 produced by room temperature rolling, J. Mater. Des., 2014, 55, p 612–618

    Article  Google Scholar 

  21. E. Tenckhoff, Deformation mechanisms, texture, and anisotropy in zirconium and zircaloy. American Society for Testing and Materials, 1988

  22. M.H. Yoo, Slip, twinning, and fracture in hexagonal close packed metals, Metall. Mater. Trans. A, 1981, 12, p 409–418

    Article  Google Scholar 

  23. M. Knezevic, I.J. Beyerlein, T. Nizolek, N.A. Mara, and T.M. Pollock, Anomalous basal slip activity in zirconium under high strain deformation, Mater. Res. Lett., 2013, 1, p 133–140

    Article  Google Scholar 

  24. K. Linga Murty and Indrajit Charit, Texture development and anisotropic deformation of zircaloys, Prog. Nucl. Energy, 2006, 48, p 325–359

    Article  Google Scholar 

  25. R.J. McCabe, G. Proust, E.K. Cerreta, and A. Misra, Quantitative analysis of deformation twinning in zirconium, Int. J. Plast., 2009, 25, p 454–472

    Article  Google Scholar 

  26. N. Hansen, New discoveries in deformed metals, Metall. Mater. Trans. A, 2001, 32, p 2917–2935

    Article  Google Scholar 

  27. D.A. Hughes, N. Hansen, and D.J. Bammann, Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations, Scr. Mater., 2003, 48, p 147–153

    Article  Google Scholar 

  28. Qing Liu and Niels Hansen, Geometrically necessary boundaries and incidental dislocation boundaries formed during cold deformation, Scr. Metall. Mater., 1995, 8, p 1289–1295

    Article  Google Scholar 

  29. A. Borbely and I. Groma, Variance method for the evaluation of particle size and dislocation density from x-ray Bragg peaks, Appl. Phys. Lett., 2001, 79, p 1972–1974

    Article  Google Scholar 

  30. I. Groma, x-ray line broadening due to an inhomogeneous dislocation distribution, Phys. Rev. B, 1998, 57, p 7535–7542

    Article  Google Scholar 

  31. A. Sarkar, P. Mukherjee, and P. Barat, x-ray diffraction studies on asymmetrically broadened peaks of heavily deformed zirconium-based alloys, Mater. Sci. Eng. A, 2008, 485, p 176–181

    Article  Google Scholar 

  32. S.K. Sahoo, V.D. Hiwarkar, I. Samajdar, G.K. Dey, D. Srivastav, R. Tiwari, and S. Banerjee, Heterogeneous deformation in single-phase Zircaloy 2, Scr. Mater., 2007, 56, p 963–966

    Article  Google Scholar 

  33. Y. Wang, M. Chen, F. Zhou, and E. Ma, High tensile ductility in a nanostructured metal, Nature, 2002, 419, p 912–914

    Article  Google Scholar 

  34. D. Guo, M. Li, Y. Shi, Z. Zhang, H. Zhang, X. Liu, B. Wei, and X. Zhang, High strength and ductility in multimodal-structured Zr, Mater. Des., 2012, 34, p 275–278

    Article  Google Scholar 

  35. D. Guo, M. Li, Y. Shi, Z. Zhang, T. Ma, H. Zhang, and X. Zhang, Simultaneously enhancing the ductility and strength of cryorolled Zr via tailoring dislocation configurations, Mater. Sci. Eng. A, 2012, 558, p 611–615

    Article  Google Scholar 

  36. F.J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, Elsevier, Oxford, 2004

    Google Scholar 

  37. R.J. Mccabe, E.K. Cerreta, A. Misra, G.C. Kaschner, and C.N. Tome, Effects of texture, temperature and strain on the deformation modes of zirconium, Philos. Mag., 2006, 86, p 3595–3611

    Article  Google Scholar 

  38. G. Monnet, B. Devincre, and L.P. Kubin, Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals: application to zirconium, Acta Mater., 2004, 52, p 4317–4328

    Article  Google Scholar 

  39. L. Li, T. Unga, Y.D. Wang, G.J. Fan, Y.L. Yang, N. Jia, Y. Ren, G. Tichy, J. Lendvai, H. Chooa, and P.K. Liawa, Simultaneous reductions of dislocation and twin densities with grain growth during cold rolling in a nanocrystalline Ni-Fe alloy, Scr. Mater., 2009, 60, p 317–320

    Article  Google Scholar 

  40. N.P. Gurao and Satyam Suwas, Deformation mechanisms during large strain deformation of nanocrystalline Nickel, Appl. Phys. Lett., 2009, 94, p 191902

    Article  Google Scholar 

  41. S.K. Sahoo, V.D. Hiwarkar, K.V. Mani Krishna, I. Samajdar, P. Pant, P.K. Pujari, G.K. Dey, D. Srivastava, R. Tiwari, and S. Banerjee, Grain fragmentation and twinning in deformed Zircaloy 2: response to positron lifetime measurements, Mater. Sci. Eng. A, 2010, 527, p 1427–1435

    Article  Google Scholar 

Download references

Acknowledgment

One of the authors, Dr. R. Jayaganthan, expresses his sincere thanks to BRNS Bombay, for their financial Grant to this work through Grant no. BRN-577-MMD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayaganthan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, S., Keskar, N., Jayaganthan, R. et al. Development of Ultrafine Grained Zircaloy-2 by Room Temperature Cross Rolling. J. of Materi Eng and Perform 24, 609–617 (2015). https://doi.org/10.1007/s11665-014-1287-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1287-y

Keywords

Navigation