Skip to main content
Log in

Effects of the Heterogeneity in the Electron Beam Welded Joint on Mechanical Properties of Ti6Al4V Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The aim of this investigation was to evaluate the effect of microstructure heterogeneity on the tensile and low cycle fatigue properties of electron beam welded (EBW) Ti6Al4V sheets. To achieve this goal, the tensile and low cycle fatigue property in the EBW joints and base metal (BM) specimens is compared. During the tensile testing, digital image correlation technology was used to measure the plastic strain field evolution within the specimens. The experimental results showed that the tensile ductility and low cycle fatigue strength of EBW joints are lower than that of BM specimens, mainly because of the effect of microstructure heterogeneity of the welded joint. Moreover, the EBW joints exhibit the cyclic hardening behavior during low fatigue process, while BM specimens exhibit the cyclic softening behavior. Compared with the BM specimens with uniform microstructure, the heterogeneity of microstructure in the EBW joint is found to decrease the mechanical properties of welded joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E.O. Ezugwu, J. Bonney, and Y. Yamane, An Overview of the Machinability of Aeroengine Alloy, J. Mater. Process. Technol., 2003, 134(2), p 233–253 (in British)

    Article  Google Scholar 

  2. H.J. Rack and J.I. Qazi, Titanium Alloys for Biomedical Applications, Mater. Sci. Eng. C, 2006, 26(8), p 1269–1277

    Article  Google Scholar 

  3. R.R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng. A, 1996, 213(1–2), p 103–114

    Article  Google Scholar 

  4. A.M. Irisarri, J.L. Barreda, and X. Azpiroz, Influence of the Filler Metal on the Properties of Ti-6Al-4V Electron Beam Weldments. Part I: Welding Procedures and Microstructural Characterization, Vacuum, 2010, 84(3), p 393 (in Spanish)

    Article  Google Scholar 

  5. X. Cao and M. Jahazi, Effect of Welding Speed on Butt Joint Quality of Ti-6Al-4V Alloy Welded Using a High-Power Nd:YAG Laser, Opt. Laser Eng., 2009, 47(11), p 1231–1241 (in Canadian)

    Article  Google Scholar 

  6. T.J. Ma, W.Y. Li, and S.Y. Yang, Impact Toughness and Fracture Analysis of Linear Friction Welded Ti-6Al-4V Alloy Joints, Mater. Des., 2009, 30(6), p 2128–2132 (in China)

    Article  Google Scholar 

  7. Y. Zhang, Y.S. Sato, H. Kokawa, S. Hwan, C. Park, and S. Hirano, Microstructural Characteristics and Mechanical Properties of Ti-6Al-4V Friction Stir Welds, Mater. Sci. Eng. A, 2008, 485(1–2), p 448–455 (in Japan)

    Article  Google Scholar 

  8. N.K. Babu, S.G.S. Raman, R. Mythili, and S. Saroja, Correlation of Microstructure with Mechanical Properties of TIG Weldments of Ti-6Al-4V Made With and Without Current Pulsing, Mater. Charact., 2007, 58(7), p 581–587

    Article  Google Scholar 

  9. N.J. Noolua, H.W. Kerra, Y. Zhoua, and J. Xieb, Laser Weldability of Pt and Ti Alloys, Mater. Sci. Eng. A, 2005, 397(1–2), p 8–15 (in Canadian)

    Article  Google Scholar 

  10. N. Saresh, M.G. Pillai, and J. Mathew, Investigations into the Effects of Electron Beam Welding on Thick Ti-6Al-4V Titanium Alloy, J. Mater. Process Technol., 2007, 192–193, p 83–88

    Article  Google Scholar 

  11. J.L. Barreda, F. Santamaría, X. Azpiroz, A.M. Irisarri, and J.M. Varona, Electron Beam Welded High Thickness Ti6Al4V Plates Using Filler Metal of Similar and Different Composition to the Base Plate, Vacuum, 2001, 62(2–3), p 143–150 (in Spanish)

    Article  Google Scholar 

  12. T. Mohandas, D. Banerjee, and V.V. Kutumba Rao, Observations on Impact Toughness of Electron Beam Welds of an α + β Titanium Alloy, Mater. Sci. Eng. A, 1998, 254(1–2), p 147–154

    Article  Google Scholar 

  13. Z. Sun and R. Karppi, The Application of Electron Beam Welding for the Joining of Dissimilar Metals: An Overview, J. Mater. Process Technol., 1996, 59(3), p 257–267

    Article  Google Scholar 

  14. E. Akman, A. Demir, T. Canel, and T. Sinmazçelik, Laser Welding of Ti6Al4V Titanium Alloys, J. Mater. Process Technol., 2009, 209(8), p 3705–3713 (in Turkish)

    Article  Google Scholar 

  15. N.K. Babu, S.G.S. Raman, M.C.V. Srinivasa, and G.M. Reddy, Effect of Beam Oscillation on Fatigue Life of Ti-6Al-4V Electron Beam Weldments, Mater. Sci. Eng. A, 2007, 471(1–2), p 113–119

    Article  Google Scholar 

  16. S.G. Wang and X.Q. Wu, Investigation on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Joints with Electron Beam Welding, Mater. Des., 2012, 36, p 663–670 (in Chinese)

    Article  Google Scholar 

  17. T.S. Balasubramanian, V. Balasubramanian, and M.A.M. Manickam, Fatigue Crack Growth Behaviour of Gas Tungsten Arc, Electron Beam and Laser Beam Welded Ti-6Al-4V Alloy, Mater. Des., 2011, 32(8–9), p 4509–4520

    Article  Google Scholar 

  18. S.Q. Wang, J.H. Liu, and D.L. Chen, Tensile and Fatigue Properties of Electron Beam Welded Dissimilar Joints Between Ti-6Al-4V and BT9 Titanium Alloys, Mater. Sci. Eng. A, 2013, 584, p 47–56 (in Canadian)

    Article  Google Scholar 

  19. J.L. Barreda, X. Azpiroz, and A.M. Irisarri, Influence of the Filler Metal on the Mechanical Properties of Ti-6Al-4V Electron Beam Weldments, Vacuum, 2010, 85(1), p 10–15 (in Spanish)

    Article  Google Scholar 

  20. J. Liu, X.L. Gao, L.J. Zhang, and J.X. Zhang, A Study of Fatigue Damage Evolution on Pulsed Nd:YAG Ti6Al4V Laser Welded Joints, Eng. Fract. Mech., 2014, 117, p 84–93 (in China)

    Article  Google Scholar 

  21. X.Z. Li, S.B. Hu, J.Z. Xiao, and L.B. Ji, Effects of the Heterogeneity in the Electron Beam Welded Joint on Fatigue Crack Growth in Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2011, 529, p 170–176 (in China)

    Article  Google Scholar 

  22. A. Squillace, U. Prisco, S. Ciliberto, and A. Astarita, Effect of Welding Parameters on Morphology and Mechanical Properties of T-6Al-4V Laser Beam Welded Butt Joints, J. Mater. Process Technol., 2012, 212, p 427–436 (in Italy)

    Article  Google Scholar 

  23. J.W. Elmer, T.A. Palmer, S.S. Babu, W. Zhang, and T. DebRoy, Phase Transformation Dynamics During Welding of Ti-6Al-4V, J. Appl. Phys., 2004, 95(12), p 8327–8339

    Article  Google Scholar 

  24. H. Liu, K. Nakata, N. Yamamoto, and J. Liao, Microstructural Characteristics and Mechanical Properties in Laser Beam Welds of Ti6Al4V Alloy, J. Mater. Sci., 2012, 47(3), p 1460–1470 (in Japanese)

    Article  Google Scholar 

  25. A.K. Nag, K.V.U. Praveen, and V. Singh, Low Cycle Fatigue Behaviour of Ti-6Al-5Zr-0-5Mo-0-25Si Alloy at Room, Bull. Mater. Sci., 2006, 29(3), p 271–275

    Article  Google Scholar 

  26. N. Singh and V. Singh, Low Cycle Fatigue Behaviour of Ti Alloy Ti Metal 834 at 873 K, Int. J. Fatigue, 2007, 29(5), p 843–851

    Article  Google Scholar 

  27. X. Feaugas and M. Clavel, Cyclic Deformation Behaviour of an α′β Titanium Alloy-I. Micromechanisms of Plasticity Under Various Loading Paths, Acta Mater., 1997, 45(7), p 2685–2701 (in French)

    Article  Google Scholar 

  28. I. Sen, K. Gopinath, R. Datta, and U. Ramamurty, Fatigue in Ti-6Al-4V-B Alloys, Acta Mater., 2010, 58(20), p 6799–6809

    Article  Google Scholar 

  29. M.J. Hadianfard, Low Cycle Fatigue Behavior and Failure Mechanism of a Dual-Phase Steel, Mater. Sci. Eng. A, 2009, 499(1–2), p 493–499 (in Iranian)

    Article  Google Scholar 

  30. S. Begum, D.L. Chen, S. Xu, and A.A. Luo, Strain-Controlled Low-Cycle Fatigue Properties of a Newly Developed Extruded Magnesium Alloy, Metall Mater. Trans. A, 2008, 39(12), p 3014–3026 (in Canadian)

    Article  Google Scholar 

  31. S. Begum, D.L. Chen, S. Xu, and A.A. Luo, Effect of Strain Ratio and Strain Rate on Low Cycle Fatigue Behavior of AZ31 Wrought Magnesium Alloy, Mater. Sci. Eng. A, 2009, 517(1–2), p 334–343 (in Canadian)

    Article  Google Scholar 

  32. A.L. Helbert and X. Feaugas, The Influence of Internal Stresses on Plastic Instabilities in α′β Titanium Alloys, Scr. Mater, 1997, 36(9), p 1067–1073 (in French)

    Article  Google Scholar 

  33. J.R. Mayeur and D.L. McDowell, A Three-Dimensional Crystal Plasticity Model for Duplex Ti-6Al-4V, Int. J. Plast., 2007, 23(9), p 1457–1485

    Article  Google Scholar 

  34. H. Matsumoto, H. Yoneda, K. Sato, S. Kurosu, E. Maire, D. Fabregue, T.J. Konno, and A. Chiba, Room-Temperature Ductility of Ti-6Al-4V alloy with α′ Martensite Microstructure, Mater. Sci. Eng. A, 2011, 528(3), p 1512–1520 (in Japanese)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 50875200 and 51275391), the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20100201110065 and 20090201120014), the Natural Science Foundation of the Shanxi Province (Grant No. 2011JM6008) and the Fundamental Research Funds from the Central University of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Gao, XL., Zhang, LJ. et al. Effects of the Heterogeneity in the Electron Beam Welded Joint on Mechanical Properties of Ti6Al4V Alloy. J. of Materi Eng and Perform 24, 319–328 (2015). https://doi.org/10.1007/s11665-014-1251-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1251-x

Keywords

Navigation