Skip to main content
Log in

The Strain-Compensated Constitutive Equation for High Temperature Flow Behavior of an Al-Zn-Mg-Cu Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to study flow stress behavior for hot working of a typical Al-Zn-Mg-Cu alloy, experimental stress-strain data obtained from isothermal hot compression tests at strain rates of 0.004, 0.04, and 0.4 s−1 and deformation temperatures of 400, 450, 500, and 520 °C were used to develop the constitutive equation. The peak stress decreased with increasing deformation temperature and decreasing strain rate. The effects of temperature and strain rate on deformation behavior were represented by Zener-Hollomon parameter in an exponent-type equation. Employing an Arrhenius-type constitutive equation, the influence of strain has been incorporated by considering the related material constants as functions of strain. The accuracy of the developed constitutive equations has been evaluated using standard statistical parameters such as correlation coefficient and average absolute relative error. The results indicate that the proposed strain-dependent constitutive equation gives an accurate and precise estimate of the flow stress in the relevant temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Cerri, E. Evangelista, A. Forcellese, and H.J. McQueen, Comparative Hot Workability of 7012 and 7075 Alloys After Different Pretreatments, Mater. Sci. Eng. A, 1995, 197, p 181–198

    Article  Google Scholar 

  2. G.Z. Quan, K.W. Liu, J. Zhou, and B. Chen, Dynamic Softening Behaviors of 7075 Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2009, 19, p 537–541

    Article  Google Scholar 

  3. M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and H.R. Abedi, An Investigation into the Hot Deformation Characteristics of 7075 Aluminum Alloy, Mater. Des., 2011, 32, p 2339–2344

    Article  Google Scholar 

  4. H.V. Atkinson, K. Burke, and G. Vaneetveld, Recrystallisation in the Semi-solid State in 7075 Aluminium Alloy, Mater. Sci. Eng. A, 2008, 490, p 266–276

    Article  Google Scholar 

  5. M.R. Rokni, A. Zarei-Hanzaki, H.R. Abedi, and N. Haghdadi, Microstructure Evolution and Mechanical Properties of Backward Thixoextruded 7075 Aluminum Alloy, Mater. Des., 2012, 36, p 557–563

    Article  Google Scholar 

  6. M.R. Rokni, A. Zarei-Hanzaki, and H.R. Abedi, Microstructure Evolution and Mechanical Properties of Back Extruded 7075 Aluminum Alloy at Elevated Temperatures, Mater. Sci. Eng. A, 2012, 532, p 593–600

    Article  Google Scholar 

  7. A. Abolhasani, A. Zarei-Hanzaki, H.R. Abedi, and M.R. Rokni, The Room Temperature Mechanical Properties of Hot Rolled 7075 Aluminum Alloy, Mater. Des., 2012, 34, p 631–636

    Article  Google Scholar 

  8. Y.H. Li, D.D. Wei, J.J. Liu, and X.F. Wang, Constitutive Equation to Predict Elevated Temperature Flow Stress of V150 Grade Oil Casing Steel, Mater. Sci. Eng. A, 2011, 530, p 367–372

    Article  Google Scholar 

  9. P. Changizian, A. Zarei-Hanzaki, and A.A. Roostaei, The High Temperature Flow Behavior Modeling of AZ81 Magnesium Alloy Considering Strain Effects, Mater. Des., 2012, 39, p 384–389

    Article  Google Scholar 

  10. S.K. Singh, K. Mahesh, A. Kumar, and M. Swathi, Understanding Formability of Extra-Deep Drawing Steel at Elevated Temperature Using Finite Element Simulation, Mater. Des., 2010, 31, p 4478–4484

    Article  Google Scholar 

  11. Y.C. Lin and G. Liu, A New Mathematical Model for Predicting Flow Stress of Typical High-Strength Alloy Steel at Elevated High Temperature, Comput. Mater. Sci., 2010, 48, p 54–58

    Article  Google Scholar 

  12. G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of Seventh International Symposium on Ballistics, The Hague, 1983, p 541–547

  13. F.J. Zerilli and R.W. Armstrong, Dislocation Mechanics Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61(5), p 1816–1825

    Article  Google Scholar 

  14. J.J. Jonas, C.M. Sellars, and McG Tegart, Strength and Structure Under Hot-Working Conditions, Int. Met. Rev., 1969, 14, p 1–24

    Article  Google Scholar 

  15. Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in hot Working, Mater. Des., 2011, 32, p 733–759

    Google Scholar 

  16. M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and A. Abolhasani, Constitutive Base Analysis of a 7075 Aluminum Alloy During Hot Compression Testing, Mater. Des., 2011, 32, p 4955–4960

    Article  Google Scholar 

  17. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1996, 14, p 1136–1138

    Article  Google Scholar 

  18. F.A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, Constitutive Analysis of Wrought Magnesium Alloy Mg-Al4-Zn1, Scripta Mater., 2007, 57, p 759–762

    Article  Google Scholar 

  19. S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High-Temperature Flow Stress in a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 500, p 114–121

    Article  Google Scholar 

  20. A. Marandi, A. Zarei-Hanzaki, N. Haghdadi, and M. Eskandari, The Prediction of Hot Deformation Behavior in Fe-21Mn-2.5Si-1.5Al Transformation-Twinning Induced Plasticity Steel, Mater. Sci. Eng. A, 2012, 554, p 72–78

    Article  Google Scholar 

  21. D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo (P91) Steel, Mater. Des., 2010, 31, p 981–984

    Article  Google Scholar 

  22. N. Haghdadi, A. Zarei-Hanzaki, and H.R. Abedi, The Effect of Thermomechanical Parameters on the Eutectic Silicon Characteristics in a Non-modified Cast A356 Aluminum Alloy, Mater. Sci. Eng. A, 2012, 535, p 252–257

    Article  Google Scholar 

  23. Y.C. Lin, Y.C. Xia, X.M. Chen, and M.S. Chen, Constitutive Descriptions for Hot Compressed 2124-T851 Aluminum Alloy Over a Wide Range of Temperature and Strain Rate, Comput. Mater. Sci., 2010, 50, p 227–233

    Article  Google Scholar 

  24. L. Ou, Y. Nie, and Z. Zheng, Strain Compensation of the Constitutive Equation for High Temperature Flow Stress of a Al-Cu-Li Alloy, J. Mater. Eng. Perform., 2014, 23, p 25–30

    Article  Google Scholar 

  25. H.J. McQueen, E. Fry, and J. Belling, Comparative Constitutive Constants for Hot Working of Al-4.4Mg-0.7 Mn (AA5083), J. Mater. Eng. Perform., 2001, 10(2), p 164–172

    Article  Google Scholar 

  26. M. Li, S. Cheng, A. Xiong, H. Wang, S. Shaobo, and L. Sun, Acquiring a Novel Constitutive Equation of a TC6 Alloy at High-Temperature Deformation, J. Mater. Eng. Perform., 2005, 14, p 263–266

    Article  Google Scholar 

  27. X. Li, M. Li, D. Zhu, and A. Xiong, Deformation Behavior of TC6 Alloy in Isothermal Forging, J. Mater. Eng. Perform., 2005, 14, p 671–676

    Article  Google Scholar 

  28. Y. Yang, F. Li, Z. Yuan, and H. Qiao, A Modified Constitutive Equation for Aluminum Alloy Reinforced by Silicon Carbide Particles at Elevated Temperature, J. Mater. Eng. Perform., 2013, 22, p 2641–2655

    Article  Google Scholar 

  29. ASTM E209, Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates, Annual Book of ASTM Standards, ASTM, West Conshohocken, 2010

  30. D. Samantaray, S. Mandal, and A.K. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uniaxial Compression Testing, Mater. Des., 2011, 32, p 2797–2802

    Article  Google Scholar 

  31. S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma, Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2012, 43, p 2056–2068

    Article  Google Scholar 

  32. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Press, Oxford, 2004

    Google Scholar 

  33. S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma, A Study on Microstructural Evolution and Dynamic Recrystallization During Isothermal Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2011, 42, p 1062–1072

    Article  Google Scholar 

  34. C. Zener and H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1994, 15, p 22–32

    Article  Google Scholar 

  35. T. Sheppard and A. Jackson, Constitutive Equations for Use in Prediction of Flow Stress During Extrusion of Aluminium Alloys, Mater. Sci. Technol., 1997, 13, p 203–207

    Article  Google Scholar 

  36. H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63

    Article  Google Scholar 

  37. N. Jin, H. Zhang, Y. Han, W. Wu, and J. Chen, Hot Deformation Behavior of 7150 aluminum Alloy During Compression at Elevated Temperature, Mater. Charact., 2009, 60, p 530–536

    Article  Google Scholar 

  38. H.E. Hu, L. Zhen, L. Yang, W.Z. Shao, and B.Y. Zhang, Deformation Behavior and Microstructure Evolution of 7050 Aluminum Alloy During High Temperature Deformation, Mater. Sci. Eng. A, 2008, 488, p 64–71

    Article  Google Scholar 

  39. H.J. Mcqueen, W. Blum, and T. Sato, Ed., Aluminium Alloys, Physical and Mechanical Properties, ICAA6, Japan Institute of Metals, Sendai, 1998, p 99–112

    Google Scholar 

  40. X. Huang, H. Zhang, Y. Han, and W. Wu, Hot Deformation Behavior of 2026 Aluminum Alloy During Compression at Elevated Temperature, Mater. Sci. Eng. A, 2010, 527, p 485–490

    Article  Google Scholar 

  41. J. Van de Langkruis, W.H. Kool, and S. Van der Zwaag, Assessment of Constitutive Equations in Modelling the Hot Deformability of Some Overaged Al-Mg-Si Alloys with varying Solute Contents, Mater. Sci. Eng. A, 1999, 266, p 135–145

    Article  Google Scholar 

  42. T. Ungar, E. Schafler, P. Hanak, S. Bernstorff, and M. Zehetbauer, Vacancy Production During Plastic Deformation in Copper Determined by In Situ X-ray Diffraction, Mater. Sci. Eng. A, 2007, 462, p 398–401

    Article  Google Scholar 

  43. Z. Zeng, S. Jonsson, and Y. Zhang, Constitutive Equations for Pure Titanium at Elevated Temperatures, Mater. Sci. Eng. A, 2009, 505, p 116–119

    Article  Google Scholar 

  44. D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47, p 568–576

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Rokni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rokni, M.R., Zarei-Hanzaki, A., Widener, C.A. et al. The Strain-Compensated Constitutive Equation for High Temperature Flow Behavior of an Al-Zn-Mg-Cu Alloy. J. of Materi Eng and Perform 23, 4002–4009 (2014). https://doi.org/10.1007/s11665-014-1195-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1195-1

Keywords

Navigation