Skip to main content

Effect of Ultrasonic Shot Peening on Microstructure and Mechanical Properties of High-Nitrogen Austenitic Stainless Steel

Abstract

The effect of ultrasonic shot peening (USSP) was studied on microstructural modification and mechanical properties such as microhardness, yield strength, tensile strength, and low cycle fatigue (LCF) life of a nitrogen stabilized austenitic stainless steel, at room temperature. There was grain refinement up to nano scale in surface region of the shot peened specimens and the microhardness was increased markedly up to the depth of approximately 100 µm. There was insignificant increase in yield and tensile strength, but drastic reduction in LCF life, particularly at low strain amplitude, from USSP. The nominal increase in yield and tensile strength was due to grain refinement in the surface region and drastic fall in LCF life was due to surface cracking resulting from USSP.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    J.W. Simmons, Overview: High Nitrogen Alloying of Stainless Steel, Mater. Sci. Eng. A, 1996, 207, p 159

    Article  Google Scholar 

  2. 2.

    M.O. Speidel, Properties and Applications of High Nitrogen Steels, HNS 88, Lille, France, May 1988, J. Foct and A. Hendry, Ed., The Institute of Metals, London, 1989, p 92

    Google Scholar 

  3. 3.

    J.A. Disegi and L. Eschbach, Stainless Steel in Bone Surgery, Injury, 2000, 31, p 4

    Google Scholar 

  4. 4.

    C. Schmidt, A. Ignatius, and L.E. Claes, Proliferation and Differentiation Parameters of Human Osteoblasts on Titanium and Steel Surfaces, J. Biomed. Mater. Res., 2001, 54, p 209

    Article  Google Scholar 

  5. 5.

    M.E. Ferreira, M.L. Pereira, E. Garcia, F. Costa, J.P. Sousa, and G.S.D. Carvalho, Comparative Study of Metallic Biomaterials Toxicity: A Histochemical and Immunohistochemical Demonstration in Mouse Spleen, J. Trace Elem. Med Biol., 2003, 17, p 45

    Article  Google Scholar 

  6. 6.

    M.C. Pereira, M.L. Pereira, and J.P. Sousa, Evaluation of Nickel Toxicity on Liver, Spleen, and Kidney of Mice After Administration of High-Dose Metal Ion, J. Biomed. Mater. Res., 1998, 40, p 40

    Article  Google Scholar 

  7. 7.

    J. Uggowitzer, R. Magdowski, and M. Speidel, Nickel Free High Nitrogen Austenitic Steel, ISIJ Int., 1996, 36, p 901

    Article  Google Scholar 

  8. 8.

    J. Menzel, W. Kirschner, and G. Stein, High Nitrogen Containing Ni-Free Austenitic Steels for Medical Applications, ISIJ Int., 1996, 36, p 893

    Article  Google Scholar 

  9. 9.

    IARC, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Surgical Implants and Other Foreign Bodies, IARC Monogr. (Lyon), 1999, 74, p 65

    Google Scholar 

  10. 10.

    G. Sudhakar Rao, Vakil Singh, and L.K. Singhal, In Vitro Corrosion Fatigue Behavior of Low Nickel High Nitrogen Austenitic Stainless Steel, Mater. Sci. Eng. A, 2012, 538, p 224

    Article  Google Scholar 

  11. 11.

    J.-B. Vogt, Fatigue Properties of High Nitrogen Steels, J. Mater. Process. Technol., 2001, 117, p 364

    Article  Google Scholar 

  12. 12.

    C. Bo and Z. Zheng, Low Cycle Fatigue Behavior of a High Nitrogen Austenitic Stainless Steel Under Uniaxial and Non-proportional Loadings Based on the Partition of Hysteresis Loops, Mater. Sci. Eng. A, 2012, 547, p 72

    Article  Google Scholar 

  13. 13.

    M.O. Speidel and R.M. Pedrazzoli, High Nitrogen Stainless Steels in Chloride Solutions, Mater. Perform., 1992, 31, p 59

    Google Scholar 

  14. 14.

    M. Janik-Czachor, E. Lunarska, and Z. Szklarska Smialowska, Effect of Nitrogen Content in a 18Cr-5Ni-10Mn Stainless Steel on the Pitting Susceptibility in Chloride Solution, Corrosion, 1975, 31, p 394

    Article  Google Scholar 

  15. 15.

    L. Reclaru, R. Ziegenhagen, P.-Y. Eschler, A. Blatter, and J. Lemaître, Comparative Corrosion Study of “Ni-free” Austenitic Stainless Steels in View of Medical Applicationss, Acta Biomater., 2006, 2, p 433

    Article  Google Scholar 

  16. 16.

    C. Koch, The Synthesis of Non-equilibrium Structures by Ball-Milling, Mater. Sci. Forum, 1992, 243, p 88

    Google Scholar 

  17. 17.

    R. Valiev, A. Korznikov, and R. Mulyukov, Structure and Properties of Ultrafine-Grained Materials Produced by Severe Plastic Deformation, Mater. Sci. Eng. A, 1993, 168, p 141

    Article  Google Scholar 

  18. 18.

    K. Lu, J.T. Wang, and W.D. Wei, A New Method for Synthesizing Nanocrystalline Alloys, J. Appl. Phys., 1991, 69, p 522

    Article  Google Scholar 

  19. 19.

    U. Erb, A. EI-Sherik, G. Palumbo, and K. Aust, Synthesis, Structure and Properties of Electroplated Nanocrystalline Materials, Nanostruct. Mater., 1993, 2, p 383

    Article  Google Scholar 

  20. 20.

    T. Roland, D. Retraint, K. Lu, and J. Lu, Enhanced Mechanical Behavior of a Nanocrystallised Stainless Steel and its Thermal Stability, Mater. Sci. Eng. A, 2007, 445-446, p 281

    Article  Google Scholar 

  21. 21.

    N.R. Tao, J. Lu, and K. Lu, Surface Nanocrystallization by Surface Mechanical Attrition Treatment, Mater. Sci. Forum, 2008, 579, p 91

    Article  Google Scholar 

  22. 22.

    G. Liu, J. Lu, and K. Lu, Surface Nanocrystallization of 316L Stainless Steel Induced by Ultrasonic Shot Peening, Mater. Sci. Eng. A, 2000, 286, p 91

    Article  Google Scholar 

  23. 23.

    N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, and K. Lu, An Investigation of Surface Nanocrystallization Mechanism in Fe Induced by Surface Mechanical Attrition Treatment, Acta Mater., 2002, 50, p 4603

    Article  Google Scholar 

  24. 24.

    D.C. Ludwigson, Modified Stress-Strain Relation for FCC Metals and Alloys, Metall. Trans., 1971, 2, p 2825

    Article  Google Scholar 

  25. 25.

    B.D. Cullity, Elements of X-ray Diffraction, Addison Wesley, Reading, MA, 1956

    Google Scholar 

  26. 26.

    G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, Singapore, 1988

    Google Scholar 

Download references

Acknowledgment

The authors are thankful to M/S Jindal Steel Limited, Hisar for providing the material and Dr. Chandan Upadhyay for helping in SEM examination.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Chattopadhyay.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rai, P.K., Pandey, V., Chattopadhyay, K. et al. Effect of Ultrasonic Shot Peening on Microstructure and Mechanical Properties of High-Nitrogen Austenitic Stainless Steel. J. of Materi Eng and Perform 23, 4055–4064 (2014). https://doi.org/10.1007/s11665-014-1180-8

Download citation

Keywords

  • electron microscopy
  • high-nitrogen austenitic stainless steel
  • low cycle fatigue
  • nanostructure
  • ultrasonic shot peening (USSP)