Skip to main content

Advertisement

Log in

Effect of Interlayer Thickness on Joint Formation Between Ti-6Al-4V and Mg-AZ31 Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The joining of a Ti-6Al-4V alloy to a Mg-AZ31 alloy was performed using Ni electroplated coatings during the TLP bonding process. In this work, different coating thicknesses were used ranging from 1 to 20 μm. The effect of the coat thickness on microstructural developments and mechanical properties was studied. The bonded specimens were examined by metallographic examination, scanning electron microscopy, and X-ray diffraction analysis. It was observed that as the coat thickness increased from 1 to 12 μm, the joint shear strength increased from 9 to 47 MPa. A further increase in coat thickness had a detrimental effect on the bond strength, and a lower value of 11 MPa was recorded. The mechanism of joint formation includes three stages: solid-state diffusion, eutectic formation, and isothermal solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.W. Schutz and H.B. Watkins, Recent Developments in Titanium Alloy Application in the Energy Industry, Mater. Sci. Eng. A, 1998, 243, p 305

    Article  Google Scholar 

  2. I. Gurrapa, Characterization of Titanium Alloy Ti-6Al-4V for Chemical, Marine and Industrial Applications, Mater. Charact., 2003, 51, p 131

    Article  Google Scholar 

  3. M.K. Kulekci, Magnesium and its Alloys Applications in Automotive Industry, Int. J. Adv. Manuf. Technol., 2007, 39, p 851

    Article  Google Scholar 

  4. B.L. Mordike and T. Ebert, Magnesium Properties, Applications, Potential, Mater. Sci. Eng. A, 2001, 302, p 37

    Article  Google Scholar 

  5. A.M. Atieh and T.I. Khan, Effect of Process Parameters on Semi-solid TLP Bonding of Ti-6Al-4V to Mg-AZ31, J. Mater. Sci., 2013, 48, p 6737

    Article  Google Scholar 

  6. A.M. Atieh and T.I. Khan, Transient Liquid Phase (TLP) Brazing of Mg-AZ31 and Ti-6Al-4V Using Ni and Cu Sandwich Foils, Sci. Technol. Weld. Join., 2014, 19, p 333

  7. W. Elthalabawy and T.I. Khan, Liquid Phase Bonding of 316L Stainless Steel to AZ31 Magnesium Alloy, J. Mater. Sci. Technol., 2011, 27, p 22

    Article  Google Scholar 

  8. W. MacDonald and T. Eagar, Transient Liquid Phase Bonding Processes, Proceedings of the TMS Symposium Materials Science Joining, TMS, Warrendale, PA, 1991, pp. 93–100

  9. Y. Zhou, W.F. Gale, and T.H. North, Modelling of Transient Liquid Phase Bonding, Int. Mater. Rev., 1995, 40, p 181

    Article  Google Scholar 

  10. K. Cooke, Diffusion Bonding and Characterization of a Dispersion Strengthened Aluminum Alloy, University of Calgary, Calgary, 2011

    Google Scholar 

  11. J. Miettinen, Thermodynamic Description of Cu-Mg-Ni and Cu-Mg-Zn Systems, CALPHAD, 2008, 32, p 389

    Article  Google Scholar 

  12. R. Bormann and K. Zöltzer, Determination of the Thermodynamic Functions and Calculation of Phase Diagrams for Metastable Phases, Phys. Status Solid A, 1992, 131, p 691

    Article  Google Scholar 

  13. Y. Zhong, M. Yang, and Z.K. Liu, Contribution of First-Principles Energetics to Al-Mg Thermodynamic Modeling, CALPHAD, 2005, 29, p 303

    Article  Google Scholar 

  14. F. Zhang, S.L. Chen, Y.A. Chang, and U.R. Kattner, A Thermodynamic Description of the Ti-Al System, Intermetallics, 1997, 5, p 471

    Article  Google Scholar 

  15. J. Miettinen, Thermodynamic Description of the Cu-Al-Ni System at the Cu-Ni Side, CALPHAD, 2005, 29, p 40

    Article  Google Scholar 

  16. W. Elthalabawy, Diffusion Bonding Behavior and Characterization of Joints Made Between 316L Stainless Steel Alloy and AZ31 Magnesium Alloy, University of Calgary, Calgary, 2010

    Google Scholar 

  17. N.S. Bosco and F.W. Zok, Critical Interlayer Thickness for Transient Liquid Phase Bonding in the Cu-Sn System, Acta Mater., 2004, 52, p 2965

    Article  Google Scholar 

  18. V. Raghavan, Al-Ni-Ti (Aluminum-Nickel-Titanium), J. Phase Equilib. Diffus., 2009, 31, p 55

    Article  Google Scholar 

  19. V. Raghavan, Al-Ni-Ti (Aluminum-Nickel-Titanium), J. Phase Equilib. Diffus., 2005, 26, p 268

    Article  Google Scholar 

  20. V. Raghavan, Al-Ni-Ti-V (Aluminum-Nickel-Titanium-Vanadium), J. Phase Equilib. Diffus., 2005, 26, p 281

    Article  Google Scholar 

  21. E. Semenova, Aluminium-Magnesium-Nickel, New Series, Landolt-Börnstein, 1991, pp. 150–156

  22. V. Raghavan, Al-Mg-Ni (Aluminum-Magnesium-Nickel), J. Phase Equilib. Diffus., 2009, 30, p 274

    Article  Google Scholar 

  23. H.T. Yuan, L.B. Wang, R. Cao, Y.J. Wang, Y. Zhang, D.Y. Yan, W.H. Zhang, and W.L. Gong, Electrochemical Characteristics of Mg2−x Al x Ni (0 < x<0.5) Alloys, J. Alloy. Compd., 2000, 309, p 208

  24. L. Guanglie, C. Linshen, W. Lianbang, and Y. Huantang, Study on the Phase Composition of Mg2−xM x Ni (M = Al, Ti) Alloys, J. Alloy. Compd., 2001, 321, L1

  25. F. Islam and M. Medraj, The Phase Equilibria in the Mg-Ni-Ca System, CALPHAD, 2005, 29, p 289

    Article  Google Scholar 

  26. I.Y. Zavaliy, R.V. Denys, V.V. Berezovets, and V. Paul Boncour, Phase Relationships in the Mg-Ti-Ni System at 450 °C, Abstr. 10th Int. Conf. Cryst. Chem. Intermet. Compd./ASM Alloy Phase Diagrams Cent., 2007, p 58

  27. H. Mehrer, editor, Diffusion in Solid Metals and Alloys, Landolt-Börnstein, New Series III/26. Table: Chemical Diffusion Tables: Fe-Ni-Nb-U, Springer, New York, 1990

  28. I. Tuah-Poku, M. Dollar, and T. Massalski, A Study of the Transient Liquid Phase Bonding Process Applied to a Ag/Cu/Ag Sandwich Joint, Metall. Trans. A, 1988, 19, p 675

    Article  Google Scholar 

  29. H.E. Friedrich and B.L. Mordike, Magnesium Technology Metallurgy, Design Data, and Applications, Springer, Berlin, 2006

    Google Scholar 

  30. S. Pfirrmann, C. Limberg, C. Herwig, R. Stösser, and B. Ziemer, A Dinuclear Nickel(I) Dinitrogen Complex and its Reduction in Single-Electron Steps, Angew. Chem. Int. Ed. Engl., 2009, 48, p 3357

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge The German Jordanian University (GJU), and NSERC Canada for the financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas M. Atieh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atieh, A.M., Khan, T.I. Effect of Interlayer Thickness on Joint Formation Between Ti-6Al-4V and Mg-AZ31 Alloys. J. of Materi Eng and Perform 23, 4042–4054 (2014). https://doi.org/10.1007/s11665-014-1179-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1179-1

Keywords

Navigation